Cite this article as: |
Min Ao, Yucheng Ji, Pan Yi, Ni Li, Li Wang, Kui Xiao, and Chaofang Dong, Relationship between elements migration of α-AlFeMnSi phase and micro-galvanic corrosion sensitivity of Al–Zn–Mg alloy, Int. J. Miner. Metall. Mater., 30(2023), No. 1, pp. 112-121. https://doi.org/10.1007/s12613-022-2428-1 |
Chaofang Dong E-mail: cfdong@ustb.edu.cn
[1] |
Y. Zou, X.D. Wu, S.B. Tang, Q.Q. Zhu, H. Song, M.X. Guo, and L.F. Cao, Investigation on microstructure and mechanical properties of Al–Zn–Mg–Cu alloys with various Zn/Mg ratios, J. Mater. Sci. Technol., 85(2021), p. 106. doi: 10.1016/j.jmst.2020.12.045
|
[2] |
R.X. Li, Z. Ren, Y. Wu, Z.B. He, P.K. Liaw, J.L. Ren, and Y. Zhang, Mechanical behaviors and precipitation transformation of the lightweight high-Zn-content Al–Zn–Li–Mg–Cu alloy, Mater. Sci. Eng. A, 802(2021), art. No. 140637. doi: 10.1016/j.msea.2020.140637
|
[3] |
A. Albedah, B.B. Bouiadjra, S.M.A.K. Mohammed, and F. Benyahia, Fractographic analysis of the overload effect on fatigue crack growth in 2024-T3 and 7075-T6 Al alloys, Int. J. Miner. Metall. Mater., 27(2020), No. 1, p. 83. doi: 10.1007/s12613-019-1896-4
|
[4] |
C.M. Li, Z.Q. Chen, S.M. Zeng, N.P. Cheng, and T.X. Chen, Intermetallic phase formation and evolution during homogenization and solution in Al–Zn–Mg–Cu alloys, Sci. China Technol. Sci., 56(2013), No. 11, p. 2827. doi: 10.1007/s11431-013-5356-5
|
[5] |
S.Y. Park and W.J. Kim, Difference in the hot compressive behavior and processing maps between the as-cast and homogenized Al–Zn–Mg–Cu (7075) alloys, J. Mater. Sci. Technol., 32(2016), No. 7, p. 660. doi: 10.1016/j.jmst.2016.04.006
|
[6] |
Y.P. Xiao, Q.L. Pan, W.B. Li, X.Y. Liu, and Y.B. He, Influence of retrogression and re-aging treatment on corrosion behaviour of an Al–Zn–Mg–Cu alloy, Mater. Des., 32(2011), No. 4, p. 2149. doi: 10.1016/j.matdes.2010.11.036
|
[7] |
C. Xu, R.X. Zheng, S. Hanada, W.L. Xiao, and C.L. Ma, Effect of hot extrusion and subsequent T6 treatment on the microstructure evolution and tensile properties of an Al–6Si–2Cu–0.5Mg alloy, Mater. Sci. Eng. A, 710(2018), p. 102. doi: 10.1016/j.msea.2017.10.052
|
[8] |
X.M. Li and M.J. Starink, Identification and analysis of intermetallic phases in overaged Zr-containing and Cr-containing Al–Zn–Mg–Cu alloys, J. Alloys Compd., 509(2011), No. 2, p. 471. doi: 10.1016/j.jallcom.2010.09.064
|
[9] |
X.Y. Lv, E.J. Guo, Z.H. Li, and G.J. Wang, Research on microstructure in as-cast 7A55 aluminum alloy and its evolution during homogenization, Rare Met., 30(2011), No. 6, p. 664. doi: 10.1007/s12598-011-0446-7
|
[10] |
K. Ganjehfard, R. Taghiabadi, M.T. Noghani, and M.H. Ghoncheh, Tensile properties and hot tearing susceptibility of cast Al–Cu alloys containing excess Fe and Si, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 718. doi: 10.1007/s12613-020-2039-7
|
[11] |
P.K. Rout, M.M. Ghosh, and K.S. Ghosh, Effect of solution pH on electrochemical and stress corrosion cracking behaviour of a 7150 Al–Zn–Mg–Cu alloy, Mater. Sci. Eng. A, 604(2014), p. 156. doi: 10.1016/j.msea.2014.02.036
|
[12] |
A. Boag, A.E. Hughes, A.M. Glenn, T.H. Muster, and D. McCulloch, Corrosion of AA2024-T3 Part I: Localised corrosion of isolated IM particles, Corros. Sci., 53(2011), No. 1, p. 17. doi: 10.1016/j.corsci.2010.09.009
|
[13] |
Y.D. Zhang, S.B. Jin, P.W. Trimby, X.Z. Liao, M.Y. Murashkin, R.Z. Valiev, J.Z. Liu, J.M. Cairney, S.P. Ringer, and G. Sha, Dynamic precipitation, segregation and strengthening of an Al–Zn–Mg–Cu alloy (AA7075) processed by high-pressure torsion, Acta Mater., 162(2019), p. 19. doi: 10.1016/j.actamat.2018.09.060
|
[14] |
F. Liu, Z.Y. Liu, P.X. Jia, S. Bai, P.F. Yan, and Y.C. Hu, Dynamic dissolution and texture evolution of an Al–Cu–Mg–Ag alloy during hot rolling, J. Alloys Compd., 827(2020), art. No. 154254. doi: 10.1016/j.jallcom.2020.154254
|
[15] |
C.H. Fan, L. Ou, Z.Y. Hu, J.J. Yang, and X.H. Chen, re-dissolution and re-precipitation behavior of nano-precipitated phase in Al–Cu–Mg alloy subjected to rapid cold stamping, Trans. Nonferrous Met. Soc. China, 29(2019), No. 12, p. 2455. doi: 10.1016/S1003-6326(19)65153-8
|
[16] |
H.L. He, Y.P. Yi, S.Q. Huang, W.F. Guo, and Y.X. Zhang, Effects of thermomechanical treatment on grain refinement, second-phase particle dissolution, and mechanical properties of 2219 Al alloy, J. Mater. Process. Technol., 278(2020), art. No. 116506. doi: 10.1016/j.jmatprotec.2019.116506
|
[17] |
J.X. Xie and J.A. Liu, Theory and Technology of Metals Extrusion, 2nd ed., Metallurgical Industry Press, Beijing, 2012.
|
[18] |
C. Li, K. Liu, and X.G. Chen, Improvement of elevated-temperature strength and recrystallization resistance via Mn-containing dispersoid strengthening in Al–Mg–Si 6082 alloys, J. Mater. Sci. Technol., 39(2020), p. 135. doi: 10.1016/j.jmst.2019.08.027
|
[19] |
F. Alvarez-Antolin, J. Asensio-Lozano, A. Cofiño-Villar, and A. Gonzalez-Pociño, Analysis of different solution treatments in the transformation of β-AlFeSi particles into α-(FeMn)Si and their influence on different ageing treatments in Al–Mg–Si alloys, Metals, 10(2020), No. 5, art. No. 620. doi: 10.3390/met10050620
|
[20] |
N.C.W. Kuijpers, F.J. Vermolen, K. Vuik, and S.V.D. Zwaag, A model of the β-AlFeSi to α-Al(FeMn)Si transformation in Al–Mg–Si alloys, Mater. Trans., 44(2003), No. 7, p. 1448. doi: 10.2320/matertrans.44.1448
|
[21] |
J.K. Ren, X.Y. Fang, D.B. Chen, C. Cao, Y.W. He, and J.B. Liu, The effect of heat treatments on the microstructural evolution of twin-roll-cast Al–Fe–Si alloys, J. Mater. Eng. Perform., 30(2021), No. 6, p. 4401. doi: 10.1007/s11665-021-05732-1
|
[22] |
Z.J. Zhao and G.S. Frankel, On the first breakdown in AA7075-T6, Corros. Sci., 49(2007), No. 7, p. 3064. doi: 10.1016/j.corsci.2007.02.001
|
[23] |
M.C. Li, A. Seyeux, F. Wiame, P. Marcus, and J. Światowska, Insights on the Al–Cu–Fe–Mn intermetallic particles induced pitting corrosion of Al–Cu–Li alloy, Corros. Sci., 176(2020), art. No. 109040. doi: 10.1016/j.corsci.2020.109040
|
[24] |
K. Uttarasak, W. Chongchitnan, K. Matsuda, T. Chairuangsri, J. Kajornchaiyakul, and C. Banjongprasert, Evolution of Fe-containing intermetallic phases and abnormal grain growth in 6063 aluminum alloy during homogenization, Results Phys., 15(2019), art. No. 102535. doi: 10.1016/j.rinp.2019.102535
|
[25] |
H.B. Liu, H. Zhang, F.L. Jiang, and D.F. Fu, The intermetallic formation in the extruded AlSi20/8009 aluminum alloy during annealing treatment, Vacuum, 168(2019), art. No. 108800. doi: 10.1016/j.vacuum.2019.108800
|
[26] |
C.X. Duan, J.G. Tang, W.J. Ma, L.Y. Ye, H.C. Jiang, Y.L. Deng, and X.M. Zhang, Intergranular corrosion behavior of extruded 6005A alloy profile with different microstructures, J. Mater. Sci., 55(2020), No. 24, p. 10833. doi: 10.1007/s10853-020-04692-6
|
[27] |
X.X. Zhang, X.R. Zhou, J.O. Nilsson, Z.H. Dong, and C.R. Cai, Corrosion behaviour of AA6082 Al–Mg–Si alloy extrusion: Recrystallized and non-recrystallized structures, Corros. Sci., 144(2018), p. 163. doi: 10.1016/j.corsci.2018.08.047
|
[28] |
Y.C. Ji, C.F. Dong, L. Chen, K. Xiao, and X.G. Li, High-throughput computing for screening the potential alloying elements of a 7xxx aluminum alloy for increasing the alloy resistance to stress corrosion cracking, Corros. Sci., 183(2021), art. No. 109304. doi: 10.1016/j.corsci.2021.109304
|
[29] |
M. Ao, H.M. Liu, C.F. Dong, S. Feng, and J.C. Liu, Degradation mechanism of 6063 aluminium matrix composite reinforced with TiC and Al2O3 particles, J. Alloys Compd., 859(2021), art. No. 157838. doi: 10.1016/j.jallcom.2020.157838
|
[30] |
N. Li, C.F. Dong, X. Wei, C. Man, J.Z. Yao, J.L. Cao, and X.G. Li, Scanning kelvin probe force microscopy and density functional theory studies on the surface potential of the intermetallics in AA7075-T6 alloys, J. Mater. Eng. Perform., 28(2019), No. 7, p. 4289. doi: 10.1007/s11665-019-04160-6
|
[31] |
M. Ao, C.F. Dong, N. Li, L. Wang, Y.C. Ji, L. Yue, X.G. Sun, S.W. Zou, K. Xiao, and X.G. Li, Unexpected stress corrosion cracking improvement achieved by recrystallized layer in Al–Zn–Mg alloy, J. Mater. Eng. Perform., 30(2021), No. 8, p. 6258. doi: 10.1007/s11665-021-05856-4
|
[32] |
Y.J. Li, A.M.F. Muggerud, A. Olsen, and T. Furu, Precipitation of partially coherent α-Al(Mn, Fe)Si dispersoids and their strengthening effect in AA 3003 alloy, Acta Mater., 60(2012), No. 3, p. 1004. doi: 10.1016/j.actamat.2011.11.003
|
[33] |
L. Sweet, S.M. Zhu, S.X. Gao, J.A. Taylor, and M.A. Easton, The effect of iron content on the iron-containing intermetallic phases in a cast 6060 aluminum alloy, Metall. Mater. Trans. A, 42(2011), No. 7, p. 1737. doi: 10.1007/s11661-010-0595-6
|
[34] |
G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 54(1996), No. 16, p. 11169. doi: 10.1103/PhysRevB.54.11169
|
[35] |
Y. Zhang, H.X. Chen, L. Duan, J.B. Fan, L. Ni, Z. Wang, H. Li, and V. Ji, Studying the insulating characters of cubic ZrO2 slabs with nine terminations within three lower index Miller planes (001), (110) and (111), Microelectron. Eng., 213(2019), p. 77. doi: 10.1016/j.mee.2019.04.020
|
[36] |
Y.C. Ji, C.F. Dong, D.C. Kong, and X.G. Li, Design materials based on simulation results of silicon induced segregation at AlSi10Mg interface fabricated by selective laser melting, J. Mater. Sci. Technol., 46(2020), p. 145. doi: 10.1016/j.jmst.2020.01.037
|
[37] |
N. Li, C.F. Dong, C. Man, and J.Z. Yao, In situ electrochemical atomic force microscopy and auger electro spectroscopy study on the passive film structure of 2024-T3 aluminum alloy combined with a density functional theory calculation, Adv. Eng. Mater., 21(2019), No. 12, art. No. 1900386. doi: 10.1002/adem.201900386
|
[38] |
K. Nis¸ancioğlu, Electrochemical behavior of aluminum-base intermetallics containing iron, J. Electrochem. Soc., 137(1990), No. 1, p. 69. doi: 10.1149/1.2086441
|
[39] |
M. Rohwerder and F. Turcu, High-resolution Kelvin probe microscopy in corrosion science: Scanning Kelvin probe force microscopy (SKPFM) versus classical scanning Kelvin probe (SKP), Electrochim. Acta, 53(2007), No. 2, p. 290. doi: 10.1016/j.electacta.2007.03.016
|
[40] |
S.N. Zhevnenko, I.S. Petrov, D. Scheiber, and V.I. Razumovskiy, Surface and segregation energies of Ag based alloys with Ni, Co and Fe: Direct experimental measurement and DFT study, Acta Mater., 205(2021), art. No. 116565. doi: 10.1016/j.actamat.2020.116565
|
[41] |
D. Simonovic and M.H.F. Sluiter, Impurity diffusion activation energies in Al from first principles, Phys. Rev. B, 79(2009), No. 5, art. No. 054304.
|
[42] |
M.R. Rokni, A. Zarei-Hanzaki, A.A. Roostaei, and H.R. Abedi, An investigation into the hot deformation characteristics of 7075 aluminum alloy, Mater. Des., 32(2011), No. 4, p. 2339. doi: 10.1016/j.matdes.2010.12.047
|
[43] |
J.D. Robson, Microstructural evolution in aluminium alloy 7050 during processing, Mater. Sci. Eng. A, 382(2004), No. 1-2, p. 112. doi: 10.1016/j.msea.2004.05.006
|
[44] |
G. Neumann and C. Tuijn. Self-diffusion and Impurity Diffusion in Pure Metals: Handbook of Experimental Data, 1st ed. Pergamon, Oxford, 2008.
|
[45] |
S.I. Fujikawa, K.I. Hirano, and Y. Fukushima, Diffusion of silicon in aluminum, Metall. Trans. A, 9(1978), No. 12, p. 1811. doi: 10.1007/BF02663412
|
[46] |
S. Mantl, W. Petry, K. Schroeder, and G. Vogl, Diffusion of iron in aluminum studied by Mössbauer spectroscopy, Phys. Rev. B, 27(1983), No. 9, p. 5313. doi: 10.1103/PhysRevB.27.5313
|
[47] |
K. Huang and R.E. Logé, A review of dynamic recrystallization phenomena in metallic materials, Mater. Des., 111(2016), p. 548. doi: 10.1016/j.matdes.2016.09.012
|
[48] |
Q.W. Ding, D. Zhang, Y. Yan, L.Z. Zhuang, and J.S. Zhang, Role of subgrain stripe on the exfoliation corrosion of Al–4.6Mg–3.1Zn (wt.%) alloy, Corros. Sci., 169(2020), art. No. 108622. doi: 10.1016/j.corsci.2020.108622
|
[49] |
F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed., Pergamon, Oxford, 2004.
|
[50] |
Y. Huang and F.J. Humphreys, The effect of solutes on grain boundary mobility during recrystallization and grain growth in some single-phase aluminium alloys, Mater. Chem. Phys., 132(2012), No. 1, p. 166. doi: 10.1016/j.matchemphys.2011.11.018
|
[51] |
H. Tanaka and T. Minoda, Mechanical properties of 7475 aluminum alloy sheets with fine subgrain structure by warm rolling, Trans. Nonferrous Met. Soc. China, 24(2014), No. 7, p. 2187. doi: 10.1016/S1003-6326(14)63331-8
|
[52] |
X.Y. Jiao, C.F. Liu, Z.P. Guo, H. Nishat, G.D. Tong, S.L. Ma, Y. Bi, Y.F. Zhang, S. Wiesner, and S.M. Xiong, On the characterization of primary iron-rich phase in a high-pressure die-cast hypoeutectic Al–Si alloy, J. Alloys Compd., 862(2021), art. No. 158580. doi: 10.1016/j.jallcom.2020.158580
|
[53] |
W.C. Yang, S.X. Ji, X.R. Zhou, I. Stone, G. Scamans, G.E. Thompson, and Z.Y. Fan, Heterogeneous nucleation of α-Al grain on primary α-AlFeMnSi intermetallic investigated using 3D SEM ultramicrotomy and HRTEM, Metall. Mater. Trans. A, 45(2014), No. 9, p. 3971. doi: 10.1007/s11661-014-2346-6
|
[54] |
J. Wang, B. Zhang, Y.T. Zhou, and X.L. Ma, Multiple twins of a decagonal approximant embedded in S-Al2CuMg phase resulting in pitting initiation of a 2024Al alloy, Acta Mater., 82(2015), p. 22. doi: 10.1016/j.actamat.2014.09.001
|
[55] |
H. Torbati-Sarraf, T.J. Stannard, E.C.L. Plante, G.N. Sant, and N. Chawla, Direct observations of microstructure-resolved corrosion initiation in AA7075-T651 at the nanoscale using vertical scanning interferometry (VSI), Mater. Charact., 161(2020), art. No. 110166. doi: 10.1016/j.matchar.2020.110166
|