Quankuang Zhang, Baozhong Ma, Chengyan Wang, Yongqiang Chen, and Wenjuan Zhang, Comprehensive utilization of complex rubidium ore resources: Mineral dissociation and selective leaching of rubidium and potassium, Int. J. Miner. Metall. Mater., 30(2023), No. 5, pp.857-867. https://dx.doi.org/10.1007/s12613-022-2436-1
Cite this article as: Quankuang Zhang, Baozhong Ma, Chengyan Wang, Yongqiang Chen, and Wenjuan Zhang, Comprehensive utilization of complex rubidium ore resources: Mineral dissociation and selective leaching of rubidium and potassium, Int. J. Miner. Metall. Mater., 30(2023), No. 5, pp.857-867. https://dx.doi.org/10.1007/s12613-022-2436-1

Comprehensive utilization of complex rubidium ore resources: Mineral dissociation and selective leaching of rubidium and potassium

  • Currently, the process of extracting rubidium from ores has attracted a great deal of attention due to the increasing application of rubidium in high-technology field. A novel process for the comprehensive utilization of rubidium ore resources is proposed in this paper. The process consists mainly of mineral dissociation, selective leaching, and desilication. The results showed that the stable silicon–oxygen tetrahedral structure of the rubidium ore was completely disrupted by thermal activation and the mineral was completely dissociated, which was conducive to subsequent selective leaching. Under the optimal conditions, extractions of 98.67% Rb and 96.23% K were obtained by leaching the rubidium ore. Moreover, the addition of a certain amount of activated Al(OH)3 during leaching can effectively inhibit the leaching of silicon. In the meantime, the leach residue was sodalite, which was successfully synthesized to zeolite A by hydrothermal conversion. The proposed process provided a feasible strategy for the green extraction of rubidium and the sustainable utilization of various resources.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return