Cite this article as: |
Bogdan Nenchev, Qing Tao, Zihui Dong, Chinnapat Panwisawas, Haiyang Li, Biao Tao, and Hongbiao Dong, Evaluating data-driven algorithms for predicting mechanical properties with small datasets: A case study on gear steel hardenability, Int. J. Miner. Metall. Mater., 29(2022), No. 4, pp. 836-847. https://doi.org/10.1007/s12613-022-2437-0 |
Hongbiao Dong E-mail: h.dong@le.ac.uk
[1] |
M. Vctor Li, D.V. Niebuhr, L.L. Meekisho, and D.G. Atteridge, A computational model for the prediction of steel hardenability, Metall. Mater. Trans. B, 29(1998), No. 3, p. 661. doi: 10.1007/s11663-998-0101-3
|
[2] |
V. Javaheri, A. Pohjonen, J.I. Asperheim, D. Ivanov, and D. Porter, Physically based modeling, characterization and design of an induction hardening process for a new slurry pipeline steel, Mater. Des., 182(2019), art. No. 108047. doi: 10.1016/j.matdes.2019.108047
|
[3] |
E.C.H.C. O’ Brien and H.K. Yeddu, Multi-length scale modeling of carburization, martensitic microstructure evolution and fatigue properties of steel gears, J. Mater. Sci. Technol., 49(2020), p. 157. doi: 10.1016/j.jmst.2019.10.044
|
[4] |
P.H. Maynier, J. Dollet, and P. Bastien. Prediction of microstructure via empirical formulas based on CCT diagrams, [in] The 107th AIME Annual Meeting, Denver, Colorado, 1978, p. 163.
|
[5] |
D. Khan and B. Gautham, Integrated modeling of carburizing-quenching-tempering of steel gears for an ICME framework, Integr. Mater. Manuf. Innovation, 7(2018), No. 1, p. 28. doi: 10.1007/s40192-018-0107-x
|
[6] |
S. Feng, H.Y. Zhou, and H.B. Dong, Using deep neural network with small dataset to predict material defects, Mater. Des., 162(2019), p. 300. doi: 10.1016/j.matdes.2018.11.060
|
[7] |
C.G. Shen, C.C. Wang, X.L. Wei, Y. Li, S. van der Zwaag, and W. Xu, Physical metallurgy-guided machine learning and artificial intelligent design of ultrahigh-strength stainless steel, Acta Mater., 179(2019), p. 201. doi: 10.1016/j.actamat.2019.08.033
|
[8] |
F.E. Bock, R.C. Aydin, C.J. Cyron, N. Huber, S.R. Kalidindi, and B. Klusemann, A review of the application of machine learning and data mining approaches in continuum materials mechanics, Front. Mater., 6(2019), art. No. 00110. doi: 10.3389/fmats.2019.00110
|
[9] |
H.K.D.H. Bhadeshia, Neural networks in materials science, ISIJ Int., 39(1999), No. 10, p. 966. doi: 10.2355/isijinternational.39.966
|
[10] |
S.W. Wu, J. Yang, and G.M. Cao, Prediction of the Charpy V-notch impact energy of low carbon steel using a shallow neural network and deep learning, Int. J. Miner. Metall. Mater., 28(2021), No. 8, p. 1309. doi: 10.1007/s12613-020-2168-z
|
[11] |
Z.H. Deng, H.Q. Yin, X. Jiang, C. Zhang, G.F. Zhang, B. Xu, G.Q. Yang, T. Zhang, M. Wu, and X.H. Qu, Machine-learning-assisted prediction of the mechanical properties of Cu–Al alloy, Int. J. Miner. Metall. Mater., 27(2020), No. 3, p. 362. doi: 10.1007/s12613-019-1894-6
|
[12] |
J. Friedman, T. Hastie, and R. Tibshirani, Additive logistic regression: A statistical view of boosting (With discussion and a rejoinder by the authors), Ann. Stat., 28(2000), No. 2, p. 337. doi: 10.1214/aos/1016218223
|
[13] |
T.Q. Chen and C. Guestrin, XGBoost: A scalable tree boosting system [in] Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco, 2016, p.785
|
[14] |
J. Bennett and S. Lanning, The Netflix prize, [in] Proceedings of KDD Cup and Workshop 2007, San Jose, 2007.
|
[15] |
K. Song, F. Yan, T. Ding, L. Gao, and S.B. Lu, A steel property optimization model based on the XGBoost algorithm and improved PSO, Comput. Mater. Sci., 174(2020), art. No. 109472. doi: 10.1016/j.commatsci.2019.109472
|
[16] |
E.T. Akinlabi1, O.M. Ikumapayi, O.P. Bodunde, B.A. Adaramola, I.D. Uchegbu, and S.O. Fatoba, Impact of quenching on the hardenability of steels EN-3 (~1015), EN-8 (~1040) and EN-24 (~4340) during Jominy end quench technique. Int. J. Emerging Technol. 11(2020), No. 5, p. 290.
|
[17] |
F. Wetschoreck, T. Krabel, and S. Krishnamurthy, 8080labs/Ppscore: Zenodo Release [2020-10-15]. DOI: 10.5281/zenodo.4091345
|
[18] |
R.A. Waltz, J.L. Morales, J. Nocedal, and D. Orban, An interior algorithm for nonlinear optimization that combines line search and trust region steps, Math. Program., 107(2006), No. 3, p. 391. doi: 10.1007/s10107-004-0560-5
|
[19] |
P. Schüler, Calculation of hardenability in the Jominy end quench test on the basis of the Chemical composition of steel, Revue de Métallurgie, 89(1992), No. 1, p. 93.
|
[20] |
F. Burden and D. Winkler, Bayesian regularization of neural networks, [in] D.J. Livingstone ed, Artificial Neural Networks, Methods in Molecular Biology™, Humana Press, 458(2008), p. 23.
|
[21] |
S. Feng, H.Y. Zhou, and H.B. Dong, Application of deep transfer learning to predicting crystal structures of inorganic substances, Comput. Mater. Sci., 195(2021), art. No. 110476. doi: 10.1016/j.commatsci.2021.110476
|