Cite this article as: |
Jing Wang, Shangqian Zhao, Ling Tang, Fujuan Han, Yi Zhang, Yimian Xia, Lijun Wang, and Shigang Lu, Review of the electrochemical performance and interfacial issues of high-nickel layered cathodes in inorganic all-solid-state batteries, Int. J. Miner. Metall. Mater., 29(2022), No. 5, pp. 1003-1018. https://doi.org/10.1007/s12613-022-2453-0 |
Shigang Lu E-mail: lusg8867@163.com
[1] |
C.N. Zou, Q. Zhao, G.S. Zhang, and B. Xiong, Energy revolution: From a fossil energy era to a new energy era, Nat. Gas Ind. B, 3(2016), No. 1, p. 1. doi: 10.1016/j.ngib.2016.02.001
|
[2] |
Y.J. Song, Q. Ji, Y.J. Du, and J.B. Geng, The dynamic dependence of fossil energy, investor sentiment and renewable energy stock markets, Energy Econ., 84(2019), art. No. 104564. doi: 10.1016/j.eneco.2019.104564
|
[3] |
T. Fujita, H. Chen, K.T. Wang, C.L. He, Y.B. Wang, G. Dodbiba, and Y.Z. Wei, Reduction, reuse and recycle of spent Li-ion batteries for automobiles: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 2, p. 179. doi: 10.1007/s12613-020-2127-8
|
[4] |
T. Kim, W.T. Song, D.Y. Son, L.K. Ono, and Y.B. Qi, Lithium-ion batteries: Outlook on present, future, and hybridized technologies, J. Mater. Chem. A, 7(2019), No. 7, p. 2942. doi: 10.1039/C8TA10513H
|
[5] |
S.S. Zhang, Problems and their origins of Ni-rich layered oxide cathode materials, Energy Storage Mater., 24(2020), p. 247. doi: 10.1016/j.ensm.2019.08.013
|
[6] |
A.K.C. Estandarte, J.C. Diao, A.V. Llewellyn, A. Jnawali, T.M.M. Heenan, S.R. Daemi, J.J. Bailey, S. Cipiccia, D. Batey, X.W. Shi, C. Rau, D.J.L. Brett, R. Jervis, I.K. Robinson, and P.R. Shearing, Operando Bragg coherent diffraction imaging of LiNi0.8Mn0.1Co0.1O2 primary particles within commercially printed NMC811 electrode sheets, ACS Nano, 15(2021), No. 1, p. 1321. doi: 10.1021/acsnano.0c08575
|
[7] |
J. Jie, Y.L. Liu, L.N. Cong, B.H. Zhang, W. Lu, X.M. Zhang, J. Liu, H.M. Xie, and L.Q. Sun, High-performance PVDF-HFP based gel polymer electrolyte with a safe solvent in Li metal polymer battery, J. Energy Chem., 49(2020), p. 80. doi: 10.1016/j.jechem.2020.01.019
|
[8] |
S. Randau, D.A. Weber, O. Kötz, R. Koerver, P. Braun, A. Weber, E. Ivers-Tiffée, T. Adermann, J. Kulisch, W.G. Zeier, F.H. Richter, and J. Janek, Benchmarking the performance of all-solid-state lithium batteries, Nat. Energy, 5(2020), No. 3, p. 259. doi: 10.1038/s41560-020-0565-1
|
[9] |
Z.H. Zhang, T. Wei, J.H. Lu, Q.M. Xiong, Y.H. Ji, Z.Y. Zhu, and L.T. Zhang, Practical development and challenges of garnet-structured Li7La3Zr2O12 electrolytes for all-solid-state lithium-ion batteries: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1565. doi: 10.1007/s12613-020-2239-1
|
[10] |
H. Muramatsu, A. Hayashi, T. Ohtomo, S. Hama, and M. Tatsumisago, Structural change of Li2S–P2S5 sulfide solid electrolytes in the atmosphere, Solid State Ionics, 182(2011), No. 1, p. 116. doi: 10.1016/j.ssi.2010.10.013
|
[11] |
C.W. Sun, J. Liu, Y.D. Gong, D.P. Wilkinson, and J.J. Zhang, Recent advances in all-solid-state rechargeable lithium batteries, Nano Energy, 33(2017), p. 363. doi: 10.1016/j.nanoen.2017.01.028
|
[12] |
A. Kuhn, V. Duppel, and B.V. Lotsch, Tetragonal Li10GeP2S12 and Li7GePS8 – Exploring the Li ion dynamics in LGPS Li electrolytes, Energy Environ. Sci., 6(2013), No. 12, p. 3548. doi: 10.1039/c3ee41728j
|
[13] |
G.Z. Liu, W. Weng, Z.H. Zhang, L.P. Wu, J. Yang, and X.Y. Yao, Densified Li6PS5Cl nanorods with high ionic conductivity and improved critical current density for all-solid-state lithium batteries, Nano Lett., 20(2020), No. 9, p. 6660. doi: 10.1021/acs.nanolett.0c02489
|
[14] |
Q. Liu, Q.P. Yu, S. Li, S.W. Wang, L.H. Zhang, B.Y. Cai, D. Zhou, and B.H. Li, Safe LAGP-based all solid-state Li metal batteries with plastic super-conductive interlayer enabled by in situ solidification, Energy Storage Mater., 25(2020), p. 613. doi: 10.1016/j.ensm.2019.09.023
|
[15] |
T. Asano, A. Sakai, S. Ouchi, M. Sakaida, A. Miyazaki, and S. Hasegawa, Solid halide electrolytes with high lithium-ion conductivity for application in 4 V class bulk-type all-solid-state batteries, Adv. Mater., 30(2018), No. 44, art. No. 1803075. doi: 10.1002/adma.201803075
|
[16] |
K.H. Park, K. Kaup, A. Assoud, Q. Zhang, X.H. Wu, and L.F. Nazar, High-voltage superionic halide solid electrolytes for all-solid-state Li-ion batteries, ACS Energy Lett., 5(2020), No. 2, p. 533. doi: 10.1021/acsenergylett.9b02599
|
[17] |
N. Ohta, K. Takada, I. Sakaguchi, L.Q. Zhang, R.Z. Ma, K. Fukuda, M. Osada, and T. Sasaki, LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries, Electrochem. Commun., 9(2007), No. 7, p. 1486. doi: 10.1016/j.elecom.2007.02.008
|
[18] |
A. Sakuda, A. Hayashi, and M. Tatsumisago, Interfacial observation between LiCoO2 electrode and Li2S–P2S5 solid electrolytes of all-solid-state lithium secondary batteries using transmission electron microscopy, Chem. Mater., 22(2010), No. 3, p. 949. doi: 10.1021/cm901819c
|
[19] |
L.Y. Wang, L.F. Wang, R. Wang, R. Xu, C. Zhan, W. Yang, and G.C. Liu, Solid electrolyte–electrode interface based on buffer therapy in solid-state lithium batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1584. doi: 10.1007/s12613-021-2278-2
|
[20] |
M. Dixit, B. Markovsky, F. Schipper, D. Aurbach, and D.T. Major, Origin of structural degradation during cycling and low thermal stability of Ni-rich layered transition metal-based electrode materials, J. Phys. Chem. C, 121(2017), No. 41, p. 22628. doi: 10.1021/acs.jpcc.7b06122
|
[21] |
S.K. Heiskanen, N. Laszczynski, and B.L. Lucht, Perspective—Surface reactions of electrolyte with LiNixCoyMnzO2 cathodes for lithium ion batteries, J. Electrochem. Soc., 167(2020), No. 10, art. No. 100519. doi: 10.1149/1945-7111/ab981c
|
[22] |
R.A. House, J.J. Marie, M.A. Pérez-Osorio, G.J. Rees, E. Boivin, and P.G. Bruce, The role of O2 in O-redox cathodes for Li-ion batteries, Nat. Energy, 6(2021), No. 8, p. 781. doi: 10.1038/s41560-021-00780-2
|
[23] |
X.N. Li, J.W. Liang, N. Chen, J. Luo, K.R. Adair, C.H. Wang, M.N. Banis, T.K. Sham, L. Zhang, S.Q. Zhao, S.G. Lu, H. Huang, R.Y. Li, and X.L. Sun, Water-mediated synthesis of a superionic halide solid electrolyte, Angew. Chem. Int. Ed., 58(2019), No. 46, p. 16427. doi: 10.1002/anie.201909805
|
[24] |
S.X. Deng, X. Li, Z.H. Ren, W.H. Li, J. Luo, J.W. Liang, J.N. Liang, M.N. Banis, M.S. Li, Y. Zhao, X.N. Li, C.H. Wang, Y.P. Sun, Q. Sun, R.Y. Li, Y.F. Hu, H. Huang, L. Zhang, S.G. Lu, J. Luo, and X.L. Sun, Dual-functional interfaces for highly stable Ni-rich layered cathodes in sulfide all-solid-state batteries, Energy Storage Mater., 27(2020), p. 117. doi: 10.1016/j.ensm.2020.01.009
|
[25] |
X.N. Li, J.W. Liang, J. Luo, M.N. Banis, C.H. Wang, W.H. Li, S.X. Deng, C. Yu, F.P. Zhao, Y.F. Hu, T.K. Sham, L. Zhang, S.Q. Zhao, S.G. Lu, H. Huang, R.Y. Li, K.R. Adair, and X.L. Sun, Air-stable Li3InCl6 electrolyte with high voltage compatibility for all-solid-state batteries, Energy Environ. Sci., 12(2019), No. 9, p. 2665. doi: 10.1039/C9EE02311A
|
[26] |
X.N. Li, J.W. Liang, K.R. Adair, J.J. Li, W.H. Li, F.P. Zhao, Y.F. Hu, T.K. Sham, L. Zhang, S.Q. Zhao, S.G. Lu, H. Huang, R.Y. Li, N. Chen, and X.L. Sun, Origin of superionic Li3Y1−xInxCl6 halide solid electrolytes with high humidity tolerance, Nano Lett., 20(2020), No. 6, p. 4384. doi: 10.1021/acs.nanolett.0c01156
|
[27] |
Q. Zhang, D.X. Cao, Y. Ma, A. Natan, P. Aurora, and H.L. Zhu, Sulfide-based solid-state electrolytes: Synthesis, stability, and potential for all-solid-state batteries, Adv. Mater., 31(2019), No. 44, art. No. 1901131. doi: 10.1002/adma.201901131
|
[28] |
H.J. Noh, S. Youn, C.S. Yoon, and Y.K. Sun, Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries, J. Power Sources, 233(2013), p. 121. doi: 10.1016/j.jpowsour.2013.01.063
|
[29] |
X.L. Li, Y.M. Sun, Z.Y. Wang, X.Q. Wang, H.Z. Zhang, D.W. Song, L.Q. Zhang, and L.Y. Zhu, High-rate and long-life Ni-rich oxide cathode under high mass loading for sulfide-based all-solid-state lithium batteries, Electrochim. Acta, 391(2021), art. No. 138917. doi: 10.1016/j.electacta.2021.138917
|
[30] |
T. Yoshinari, R. Koerver, P. Hofmann, Y. Uchimoto, W.G. Zeier, and J. Janek, Interfacial stability of phosphate-NASICON solid electrolytes in Ni-rich NCM cathode-based solid-state batteries, ACS Appl. Mater. Interfaces, 11(2019), No. 26, p. 23244. doi: 10.1021/acsami.9b05995
|
[31] |
Y.J. Nam, D.Y. Oh, S.H. Jung, and Y.S. Jung, Toward practical all-solid-state lithium-ion batteries with high energy density and safety: Comparative study for electrodes fabricated by dry- and slurry-mixing processes, J. Power Sources, 375(2018), p. 93. doi: 10.1016/j.jpowsour.2017.11.031
|
[32] |
X.S. Liu, B.Z. Zheng, J. Zhao, W.M. Zhao, Z.T. Liang, Y. Su, C.P. Xie, K. Zhou, Y.X. Xiang, J.P. Zhu, H.C. Wang, G.M. Zhong, Z.L. Gong, J.Y. Huang, and Y. Yang, Electrochemo–mechanical effects on structural integrity of Ni-rich cathodes with different microstructures in all solid-state batteries, Adv. Energy Mater., 11(2021), No. 8, art. No. 2003583. doi: 10.1002/aenm.202003583
|
[33] |
S.H. Jung, U.H. Kim, J.H. Kim, S. Jun, C.S. Yoon, Y.S. Jung, and Y.K. Sun, Ni-rich layered cathode materials with electrochemo–mechanically compliant microstructures for all-solid-state Li batteries, Adv. Energy Mater., 10(2020), No. 6, art. No. 1903360. doi: 10.1002/aenm.201903360
|
[34] |
F. Hippauf, B. Schumm, S. Doerfler, H. Althues, S. Fujiki, T. Shiratsuchi, T. Tsujimura, Y. Aihara, and S. Kaskel, Overcoming binder limitations of sheet-type solid-state cathodes using a solvent-free dry-film approach, Energy Storage Mater., 21(2019), p. 390. doi: 10.1016/j.ensm.2019.05.033
|
[35] |
Y. Han, S.H. Jung, H. Kwak, S. Jun, H.H. Kwak, J.H. Lee, S.T. Hong, and Y.S. Jung, Single- or poly-crystalline Ni-rich layered cathode, sulfide or halide solid electrolyte: Which will be the winners for all-solid-state batteries? Adv. Energy Mater., 11(2021), No. 21, art. No. 2100126. doi: 10.1002/aenm.202100126
|
[36] |
J.M. Doux, Y. Yang, D.H.S. Tan, H. Nguyen, E.A. Wu, X.F. Wang, A. Banerjee, and Y.S. Meng, Pressure effects on sulfide electrolytes for all solid-state batteries, J. Mater. Chem. A, 8(2020), No. 10, p. 5049. doi: 10.1039/C9TA12889A
|
[37] |
D.Y. Oh, D.H. Kim, S.H. Jung, J.G. Han, N.S. Choi, and Y.S. Jung, Single-step wet-chemical fabrication of sheet-type electrodes from solid-electrolyte precursors for all-solid-state lithium-ion batteries, J. Mater. Chem. A, 5(2017), No. 39, p. 20771. doi: 10.1039/C7TA06873E
|
[38] |
G. Bucci, B. Talamini, A.R. Balakrishna, Y.M. Chiang, and W.C. Carter, Mechanical instability of electrode–electrolyte interfaces in solid-state batteries, Phys. Rev. Mater., 2(2018), No. 10, art. No. 105407. doi: 10.1103/PhysRevMaterials.2.105407
|
[39] |
H. Cha, J. Kim, H. Lee, N. Kim, J. Hwang, J. Sung, M. Yoon, K. Kim, and J. Cho, Boosting reaction homogeneity in high-energy lithium-ion battery cathode materials, Adv. Mater., 32(2020), No. 39, art. No. 2003040. doi: 10.1002/adma.202003040
|
[40] |
H.H. Ryu, K.J. Park, C.S. Yoon, and Y.K. Sun, Capacity fading of Ni-rich Li[NixCoyMn1−x−y]O2 (0.6 ≤ x ≤ 0.95) cathodes for high-energy-density lithium-ion batteries: Bulk or surface degradation? Chem. Mater., 30(2018), No. 3, p. 1155. doi: 10.1021/acs.chemmater.7b05269
|
[41] |
H.H. Ryu, G.T. Park, C.S. Yoon, and Y.K. Sun, Microstructural degradation of Ni-rich Li[NixCoyMn1−x−y]O2 cathodes during accelerated calendar aging, Small, 14(2018), No. 45, art. No. 1803179. doi: 10.1002/smll.201803179
|
[42] |
C.K. Yang, L.Y. Qi, Z.C. Zuo, R.N. Wang, M. Ye, J. Lu, and H.H. Zhou, Insights into the inner structure of high-nickel agglomerate as high-performance lithium-ion cathodes, J. Power Sources, 331(2016), p. 487. doi: 10.1016/j.jpowsour.2016.09.068
|
[43] |
P.F. Yan, J.M. Zheng, J. Liu, B.Q. Wang, X.P. Cheng, Y.F. Zhang, X.L. Sun, C.M. Wang, and J.G. Zhang, Tailoring grain boundary structures and chemistry of Ni-rich layered cathodes for enhanced cycle stability of lithium-ion batteries, Nat. Energy, 3(2018), No. 7, p. 600. doi: 10.1038/s41560-018-0191-3
|
[44] |
H.H. Sun, H.H. Ryu, U.H. Kim, J.A. Weeks, A. Heller, Y.K. Sun, and C.B. Mullins, Beyond doping and coating: Prospective strategies for stable high-capacity layered Ni-rich cathodes, ACS Energy Lett., 5(2020), No. 4, p. 1136. doi: 10.1021/acsenergylett.0c00191
|
[45] |
A. Sakuda, K. Kuratani, M. Yamamoto, M. Takahashi, T. Takeuchi, and H. Kobayashi, All-solid-state battery electrode sheets prepared by a slurry coating process, J. Electrochem. Soc., 164(2017), No. 12, p. A2474. doi: 10.1149/2.0951712jes
|
[46] |
C.W. Wang, K. Fu, S.P. Kammampata, D.W. McOwen, A.J. Samson, L. Zhang, G.T. Hitz, A.M. Nolan, E.D. Wachsman, Y.F. Mo, V. Thangadurai, and L.B. Hu, Garnet-type solid-state electrolytes: Materials, interfaces, and batteries, Chem. Rev., 120(2020), No. 10, p. 4257. doi: 10.1021/acs.chemrev.9b00427
|
[47] |
T. Kato, T. Hamanaka, K. Yamamoto, T. Hirayama, F. Sagane, M. Motoyama, and Y. Iriyama, In-situ Li7La3Zr2O12/LiCoO2 interface modification for advanced all-solid-state battery, J. Power Sources, 260(2014), p. 292. doi: 10.1016/j.jpowsour.2014.02.102
|
[48] |
K. Park, B.C. Yu, J.W. Jung, Y.T. Li, W.D. Zhou, H.C. Gao, S. Son, and J.B. Goodenough, Electrochemical nature of the cathode interface for a solid-state lithium-ion battery: Interface between LiCoO2 and garnet-Li7La3Zr2O12, Chem. Mater., 28(2016), No. 21, p. 8051. doi: 10.1021/acs.chemmater.6b03870
|
[49] |
C.S. Wu, J.T. Lou, J. Zhang, Z.Y. Chen, A. Kakar, B. Emley, Q. Ai, H. Guo, Y.L. Liang, J. Lou, Y. Yao, and Z. Fan, Current status and future directions of all-solid-state batteries with lithium metal anodes, sulfide electrolytes, and layered transition metal oxide cathodes, Nano Energy, 87(2021), art. No. 106081. doi: 10.1016/j.nanoen.2021.106081
|
[50] |
W.B. Zhang, F.H. Richter, S.P. Culver, T. Leichtweiss, J.G. Lozano, C. Dietrich, P.G. Bruce, W.G. Zeier, and J. Janek, Degradation mechanisms at the Li10GeP2S12/LiCoO2 cathode interface in an all-solid-state lithium-ion battery, ACS Appl. Mater. Interfaces, 10(2018), No. 26, p. 22226. doi: 10.1021/acsami.8b05132
|
[51] |
S. Noh, W.T. Nichols, M. Cho, and D. Shin, Importance of mixing protocol for enhanced performance of composite cathodes in all-solid-state batteries using sulfide solid electrolyte, J. Electroceram., 40(2018), No. 4, p. 293. doi: 10.1007/s10832-018-0129-y
|
[52] |
R.C. Xu, X.H. Xia, S.Z. Zhang, D. Xie, X.L. Wang, and J.P. Tu, Interfacial challenges and progress for inorganic all-solid-state lithium batteries, Electrochim. Acta, 284(2018), p. 177. doi: 10.1016/j.electacta.2018.07.191
|
[53] |
X.Y. Ke, Y. Wang, G.F. Ren, and C. Yuan, Towards rational mechanical design of inorganic solid electrolytes for all-solid-state lithium ion batteries, Energy Storage Mater., 26(2020), p. 313. doi: 10.1016/j.ensm.2019.08.029
|
[54] |
Y.Y. Lu, Z.Y. Tu, and L.A. Archer, Stable lithium electrodeposition in liquid and nanoporous solid electrolytes, Nat. Mater., 13(2014), No. 10, p. 961. doi: 10.1038/nmat4041
|
[55] |
T. Liu, Y.B. Zhang, R.J. Chen, S.X. Zhao, Y.H. Lin, C.W. Nan, and Y. Shen, Non-successive degradation in bulk-type all-solid-state lithium battery with rigid interfacial contact, Electrochem. Commun., 79(2017), p. 1. doi: 10.1016/j.elecom.2017.03.016
|
[56] |
L.X. Bai, W.D. Xue, Y. Li, X.G. Liu, Y. Li, and J.L. Sun, The interfacial behaviours of all-solid-state lithium ion batteries, Ceram. Int., 44(2018), No. 7, p. 7319. doi: 10.1016/j.ceramint.2018.01.190
|
[57] |
K. Lee, S. Kim, J. Park, S.H. Park, A. Coskun, D.S. Jung, W. Cho, and J.W. Choi, Selection of binder and solvent for solution-processed all-solid-state battery, J. Electrochem. Soc., 164(2017), No. 9, p. A2075. doi: 10.1149/2.1341709jes
|
[58] |
J. Zhang, H.Y. Zhong, C. Zheng, Y. Xia, C. Liang, H. Huang, Y.P. Gan, X.Y. Tao, and W.K. Zhang, All-solid-state batteries with slurry coated LiNi0.8Co0.1Mn0.1O2 composite cathode and Li6PS5Cl electrolyte: Effect of binder content, J. Power Sources, 391(2018), p. 73. doi: 10.1016/j.jpowsour.2018.04.069
|
[59] |
A. Bielefeld, D.A. Weber, and J. Janek, Modeling effective ionic conductivity and binder influence in composite cathodes for all-solid-state batteries, ACS Appl. Mater. Interfaces, 12(2020), No. 11, p. 12821. doi: 10.1021/acsami.9b22788
|
[60] |
N. Delaporte, A. Darwiche, M. Léonard, G. Lajoie, H. Demers, D. Clément, R. Veillette, L. Rodrigue, M.L. Trudeau, C. Kim, and K. Zaghib, Facile formulation and fabrication of the cathode using a self-lithiated carbon for all-solid-state batteries, Sci. Rep., 10(2020), art. No. 11813. doi: 10.1038/s41598-020-68865-8
|
[61] |
C.F. Liu, J.F. Yuan, R. Masse, X.X. Jia, W.C. Bi, Z. Neale, T. Shen, M. Xu, M. Tian, J.Q. Zheng, J.J. Tian, and G.Z. Cao, Interphases, interfaces, and surfaces of active materials in rechargeable batteries and perovskite solar cells, Adv. Mater., 33(2021), No. 22, art. No. 1905245. doi: 10.1002/adma.201905245
|
[62] |
J. Haruyama, K. Sodeyama, L.Y. Han, K. Takada, and Y. Tateyama, Space–charge layer effect at interface between oxide cathode and sulfide electrolyte in all-solid-state lithium-ion battery, Chem. Mater., 26(2014), No. 14, p. 4248. doi: 10.1021/cm5016959
|
[63] |
L.L. Wang, R.C. Xie, B.B. Chen, X.R. Yu, J. Ma, C. Li, Z.W. Hu, X.W. Sun, C.J. Xu, S.M. Dong, T.S. Chan, J. Luo, G.L. Cui, and L.Q. Chen, In-situ visualization of the space-charge-layer effect on interfacial lithium-ion transport in all-solid-state batteries, Nat. Commun., 11(2020), art. No. 5889. doi: 10.1038/s41467-020-19726-5
|
[64] |
J. Zhang, C. Zheng, L.J. Li, Y. Xia, H. Huang, Y.P. Gan, C. Liang, X.P. He, X.Y. Tao, and W.K. Zhang, Unraveling the intra and intercycle interfacial evolution of Li6PS5Cl-based all-solid-state lithium batteries, Adv. Energy Mater., 10(2020), No. 4, art. No. 1903311. doi: 10.1002/aenm.201903311
|
[65] |
L. Froboese, J.F. van der Sichel, T. Loellhoeffel, L. Helmers, and A. Kwade, Effect of microstructure on the ionic conductivity of an all solid-state battery electrode, J. Electrochem. Soc., 166(2019), No. 2, p. A318. doi: 10.1149/2.0601902jes
|
[66] |
X.N. Li, J.W. Liang, X.F. Yang, K.R. Adair, C.H. Wang, F.P. Zhao, and X.L. Sun, Progress and perspectives on halide lithium conductors for all-solid-state lithium batteries, Energy Environ. Sci., 13(2020), No. 5, p. 1429. doi: 10.1039/C9EE03828K
|
[67] |
L. Xu, S. Tang, Y. Cheng, K.Y. Wang, J.Y. Liang, C. Liu, Y.C. Cao, F. Wei, and L.Q. Mai, Interfaces in solid-state lithium batteries, Joule, 2(2018), No. 10, p. 1991. doi: 10.1016/j.joule.2018.07.009
|
[68] |
Y.Z. Zhu, X.F. He, and Y.F. Mo, Origin of outstanding stability in the lithium solid electrolyte materials: Insights from thermodynamic analyses based on first-principles calculations, ACS Appl. Mater. Interfaces, 7(2015), No. 42, p. 23685. doi: 10.1021/acsami.5b07517
|
[69] |
X.N. Li, J.W. Liang, J. Luo, C.H. Wang, X. Li, Q. Sun, R.Y. Li, L. Zhang, R. Yang, S.G. Lu, H. Huang, and X.L. Sun, High-performance Li–SeSx all-solid-state lithium batteries, Adv. Mater., 31(2019), No. 17, art. No. 1808100. doi: 10.1002/adma.201808100
|
[70] |
A. Banerjee, H.M. Tang, X.F. Wang, J.H. Cheng, H. Nguyen, M.H. Zhang, D.H.S. Tan, T.A. Wynn, E.A. Wu, J.M. Doux, T.P. Wu, L. Ma, G.E. Sterbinsky, M.S. D’Souza, S.P. Ong, and Y.S. Meng, Revealing nanoscale solid–solid interfacial phenomena for long-life and high-energy all-solid-state batteries, ACS Appl. Mater. Interfaces, 11(2019), No. 46, p. 43138. doi: 10.1021/acsami.9b13955
|
[71] |
M.V. Reddy, C.M. Julien, A. Mauger, and K. Zaghib, Sulfide and oxide inorganic solid electrolytes for all-solid-state Li batteries: A review, Nanomaterials, 10(2020), No. 8, art. No. 1606. doi: 10.3390/nano10081606
|
[72] |
N. Zhang, X.H. Long, Z. Wang, P.F. Yu, F.D. Han, J.M. Fu, G.X. Ren, Y.R. Wu, S. Zheng, W.C. Huang, C.S. Wang, H. Li, and X.S. Liu, Mechanism study on the interfacial stability of a lithium garnet-type oxide electrolyte against cathode materials, ACS Appl. Energy Mater., 1(2018), No. 11, p. 5968. doi: 10.1021/acsaem.8b01035
|
[73] |
S. Wang, Q. Bai, A.M. Nolan, Y.S. Liu, S. Gong, Q. Sun, and Y.F. Mo, Lithium chlorides and bromides as promising solid-state chemistries for fast ion conductors with good electrochemical stability, Angew. Chem. Int. Ed., 58(2019), No. 24, p. 8039. doi: 10.1002/anie.201901938
|
[74] |
Y.H. Xiao, Y. Wang, S.H. Bo, J.C. Kim, L.J. Miara, and G. Ceder, Understanding interface stability in solid-state batteries, Nat. Rev. Mater., 5(2020), No. 2, p. 105. doi: 10.1038/s41578-019-0157-5
|
[75] |
D. Park, H. Park, Y. Lee, S.O. Kim, H.G. Jung, K.Y. Chung, J.H. Shim, and S. Yu, Theoretical design of lithium chloride superionic conductors for all-solid-state high-voltage lithium-ion batteries, ACS Appl. Mater. Interfaces, 12(2020), No. 31, p. 34806. doi: 10.1021/acsami.0c07003
|
[76] |
N.Y. Park, H.H. Ryu, G.T. Park, T.C. Noh, and Y.K. Sun, Optimized Ni-rich NCMA cathode for electric vehicle batteries, Adv. Energy Mater., 11(2021), No. 9, art. No. 2003767. doi: 10.1002/aenm.202003767
|
[77] |
B.Y. Zhu, Z.H. Yu, L. Meng, Z.Y. Xu, C.X. Lv, Y. Wang, G.Y. Wei, and J.K. Qu, The relationship between failure mechanism of nickel-rich layered oxide for lithium batteries and the research progress of coping strategies: A review, Ionics, 27(2021), No. 7, p. 2749. doi: 10.1007/s11581-021-04019-8
|
[78] |
T. Bartsch, A.Y. Kim, F. Strauss, L. de Biasi, J.H. Teo, J. Janek, P. Hartmann, and T. Brezesinski, Indirect state-of-charge determination of all-solid-state battery cells by X-ray diffraction, Chem. Commun., 55(2019), No. 75, p. 11223. doi: 10.1039/C9CC04453A
|
[79] |
L. de Biasi, A.O. Kondrakov, H. Geßwein, T. Brezesinski, P. Hartmann, and J. Janek, Between Scylla and Charybdis: Balancing among structural stability and energy density of layered NCM cathode materials for advanced lithium-ion batteries, J. Phys. Chem. C, 121(2017), No. 47, p. 26163. doi: 10.1021/acs.jpcc.7b06363
|
[80] |
R. Koerver, W.B. Zhang, L. de Biasi, S. Schweidler, A.O. Kondrakov, S. Kolling, T. Brezesinski, P. Hartmann, W.G. Zeier, and J. Janek, Chemo-mechanical expansion of lithium electrode materials – On the route to mechanically optimized all-solid-state batteries, Energy Environ. Sci., 11(2018), No. 8, p. 2142. doi: 10.1039/C8EE00907D
|
[81] |
R. Koerver, I. Aygün, T. Leichtweiß, C. Dietrich, W.B. Zhang, J.O. Binder, P. Hartmann, W.G. Zeier, and J. Janek, Capacity fade in solid-state batteries: Interphase formation and chemomechanical processes in nickel-rich layered oxide cathodes and lithium thiophosphate solid electrolytes, Chem. Mater., 29(2017), No. 13, p. 5574. doi: 10.1021/acs.chemmater.7b00931
|
[82] |
T. Shi, Y.Q. Zhang, Q.S. Tu, Y.H. Wang, M.C. Scott, and G. Ceder, Characterization of mechanical degradation in an all-solid-state battery cathode, J. Mater. Chem. A, 8(2020), No. 34, p. 17399. doi: 10.1039/D0TA06985J
|
[83] |
Y.H. Xiao, L.J. Miara, Y. Wang, and G. Ceder, Computational screening of cathode coatings for solid-state batteries, Joule, 3(2019), No. 5, p. 1252. doi: 10.1016/j.joule.2019.02.006
|
[84] |
W.D. Richards, L.J. Miara, Y. Wang, J.C. Kim, and G. Ceder, Interface stability in solid-state batteries, Chem. Mater., 28(2016), No. 1, p. 266. doi: 10.1021/acs.chemmater.5b04082
|
[85] |
F. Walther, F. Strauss, X.H. Wu, B. Mogwitz, J. Hertle, J. Sann, M. Rohnke, T. Brezesinski, and J. Janek, The working principle of a Li2CO3/LiNbO3 coating on NCM for thiophosphate-based all-solid-state batteries, Chem. Mater., 33(2021), No. 6, p. 2110. doi: 10.1021/acs.chemmater.0c04660
|
[86] |
X.L. Li, Q.F. Sun, Z.Y. Wang, D.W. Song, H.Z. Zhang, X.X. Shi, C.L. Li, L.Q. Zhang, and L.Y. Zhu, Outstanding electrochemical performances of the all-solid-state lithium battery using Ni-rich layered oxide cathode and sulfide electrolyte, J. Power Sources, 456(2020), art. No. 227997. doi: 10.1016/j.jpowsour.2020.227997
|
[87] |
J.S. Lee and Y.J. Park, Comparison of LiTaO3 and LiNbO3 surface layers prepared by post- and precursor-based coating methods for Ni-rich cathodes of all-solid-state batteries, ACS Appl. Mater. Interfaces, 13(2021), No. 32, p. 38333. doi: 10.1021/acsami.1c10294
|
[88] |
F. Strauss, J.H. Teo, J. Maibach, A.Y. Kim, A. Mazilkin, J. Janek, and T. Brezesinski, Li2ZrO3-coated NCM622 for application in inorganic solid-state batteries: Role of surface carbonates in the cycling performance, ACS Appl. Mater. Interfaces, 12(2020), No. 51, p. 57146. doi: 10.1021/acsami.0c18590
|
[89] |
H. Visbal, Y. Aihara, S. Ito, T. Watanabe, Y. Park, and S. Doo, The effect of diamond-like carbon coating on LiNi0.8Co0.15Al0.05O2 particles for all solid-state lithium-ion batteries based on Li2S–P2S5 glass-ceramics, J. Power Sources, 314(2016), p. 85. doi: 10.1016/j.jpowsour.2016.02.088
|
[90] |
J. Yang, B.X. Huang, J.Y. Yin, X.Y. Yao, G. Peng, J. Zhou, and X.X. Xu, Structure integrity endowed by a Ti-containing surface layer towards ultrastable LiNi0.8Co0.15Al0.05O2 for all-solid-state lithium batteries, J. Electrochem. Soc., 163(2016), No. 8, p. A1530. doi: 10.1149/2.0331608jes
|
[91] |
A.Y. Kim, F. Strauss, T. Bartsch, J.H. Teo, T. Hatsukade, A. Mazilkin, J. Janek, P. Hartmann, and T. Brezesinski, Stabilizing effect of a hybrid surface coating on a Ni-rich NCM cathode material in all-solid-state batteries, Chem. Mater., 31(2019), No. 23, p. 9664. doi: 10.1021/acs.chemmater.9b02947
|
[92] |
Y.J. Kim, R. Rajagopal, S. Kang, and K.S. Ryu, Novel dry deposition of LiNbO3 or Li2ZrO3 on LiNi0.6Co0.2Mn0.2O2 for high performance all-solid-state lithium batteries, Chem. Eng. J., 386(2020), art. No. 123975. doi: 10.1016/j.cej.2019.123975
|
[93] |
Y.G. Lee, S. Fujiki, C. Jung, N. Suzuki, N. Yashiro, R. Omoda, D.S. Ko, T. Shiratsuchi, T. Sugimoto, S. Ryu, J.H. Ku, T. Watanabe, Y. Park, Y. Aihara, D. Im, and I.T. Han, High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes, Nat. Energy, 5(2020), No. 4, p. 299. doi: 10.1038/s41560-020-0575-z
|
[94] |
X.L. Li, L.B. Jin, D.W. Song, H.Z. Zhang, X.X. Shi, Z.Y. Wang, L.Q. Zhang, and L.Y. Zhu, LiNbO3-coated LiNi0.8Co0.1Mn0.1O2 cathode with high discharge capacity and rate performance for all-solid-state lithium battery, J. Energy Chem., 40(2020), p. 39. doi: 10.1016/j.jechem.2019.02.006
|
[95] |
Y.B. Zhang, X. Sun, D.X. Cao, G.H. Gao, Z.Z. Yang, H.L. Zhu, and Y. Wang, Self-stabilized LiNi0.8Mn0.1Co0.1O2 in thiophosphate-based all-solid-state batteries through extra LiOH, Energy Storage Mater., 41(2021), p. 505. doi: 10.1016/j.ensm.2021.06.024
|
[96] |
F.D. Han, J. Yue, C. Chen, N. Zhao, X.L. Fan, Z.H. Ma, T. Gao, F. Wang, X.X. Guo, and C.S. Wang, Interphase engineering enabled all-ceramic lithium battery, Joule, 2(2018), No. 3, p. 497. doi: 10.1016/j.joule.2018.02.007
|