Cite this article as: |
Xiaoyuan Yuan, Yuan Wu, Xiongjun Liu, Hui Wang, Suihe Jiang, and Zhaoping Lü, Revealing the role of local shear strain partition of transformable particles in a TRIP-reinforced bulk metallic glass composite via digital image correlation, Int. J. Miner. Metall. Mater., 29(2022), No. 4, pp. 807-813. https://doi.org/10.1007/s12613-022-2460-1 |
Yuan Wu E-mail: wuyuan@ustb.edu.cn
[1] |
W.H. Wang, The elastic properties, elastic models and elastic perspectives of metallic glasses, Prog. Mater. Sci., 57(2012), No. 3, p. 487. doi: 10.1016/j.pmatsci.2011.07.001
|
[2] |
C.A. Schuh, T.C. Hufnagel, and U. Ramamurty, Mechanical behavior of amorphous alloys, Acta Mater., 55(2007), No. 12, p. 4067. doi: 10.1016/j.actamat.2007.01.052
|
[3] |
Y. Yang, J.C. Ye, J. Lu, Y.F. Gao, and P.K. Liaw, Metallic glasses: Gaining plasticity for microsystems, JOM, 62(2010), No. 2, p. 93. doi: 10.1007/s11837-010-0039-1
|
[4] |
Y.W. Wang, M. Li, and J.W. Xu, Toughen and harden metallic glass through designing statistical heterogeneity, Scripta Mater., 113(2016), p. 10. doi: 10.1016/j.scriptamat.2015.09.038
|
[5] |
Z.F. Zhang, J. Eckert, and L. Schultz, Difference in compressive and tensile fracture mechanisms of Zr59Cu20Al10Ni8Ti3 bulk metallic glass, Acta Mater., 51(2003), No. 4, p. 1167. doi: 10.1016/S1359-6454(02)00521-9
|
[6] |
D.C. Hofmann, J.Y. Suh, A. Wiest, G. Duan, M.L. Lind, M.D. Demetriou, and W.L. Johnson, Designing metallic glass matrix composites with high toughness and tensile ductility, Nature, 451(2008), No. 7182, p. 1085. doi: 10.1038/nature06598
|
[7] |
Y. Wu, Y.H. Xiao, G.L. Chen, C.T. Liu, and Z.P. Lu, Bulk metallic glass composites with transformation-mediated work-hardening and ductility, Adv. Mater., 22(2010), No. 25, p. 2770. doi: 10.1002/adma.201000482
|
[8] |
P. Gargarella, S. Pauly, K.K. Song, J. Hu, N.S. Barekar, M.S. Khoshkhoo, A. Teresiak, H. Wendrock, U. Kühn, C. Ruffing, E. Kerscher, and J. Eckert, Ti−Cu−Ni shape memory bulk metallic glass composites, Acta Mater., 61(2013), No. 1, p. 151. doi: 10.1016/j.actamat.2012.09.042
|
[9] |
Z.Y. Zhang, Y. Wu, J. Zhou, W.L. Song, D. Cao, H. Wang, X.J. Liu, and Z.P. Lu, Effects of Sn addition on phase formation and mechanical properties of TiCu-based bulk metallic glass composites, Intermetallics, 42(2013), p. 68. doi: 10.1016/j.intermet.2013.05.009
|
[10] |
F.F. Wu, K.C. Chan, S.H. Chen, S.S. Jiang, and G. Wang, ZrCu-based bulk metallic glass composites with large strain-hardening capability, Mater. Sci. Eng. A, 636(2015), p. 502. doi: 10.1016/j.msea.2015.04.027
|
[11] |
Y. Wu, H. Wang, H.H. Wu, Z.Y. Zhang, X.D. Hui, G.L. Chen, D. Ma, X.L. Wang, and Z.P. Lu, Formation of Cu–Zr–Al bulk metallic glass composites with improved tensile properties, Acta Mater., 59(2011), No. 8, p. 2928. doi: 10.1016/j.actamat.2011.01.029
|
[12] |
W.L. Song, Y. Wu, H. Wang, X.J. Liu, H.W. Chen, Z.X. Guo, and Z.P. Lu, Microstructural control via copious nucleation manipulated by in situ formed nucleants: Large-sized and ductile metallic glass composites, Adv. Mater., 28(2016), No. 37, p. 8156. doi: 10.1002/adma.201601954
|
[13] |
S. Pauly, G. Liu, G. Wang, U. Kühn, N. Mattern, and J. Eckert, Microstructural heterogeneities governing the deformation of Cu47.5Zr47.5Al5 bulk metallic glass composites, Acta Mater., 57(2009), No. 18, p. 5445. doi: 10.1016/j.actamat.2009.07.042
|
[14] |
C.P. Kim, Y.S. Oh, S. Lee, and N.J. Kim, Realization of high tensile ductility in a bulk metallic glass composite by the utilization of deformation-induced martensitic transformation, Scripta Mater., 65(2011), No. 4, p. 304. doi: 10.1016/j.scriptamat.2011.04.037
|
[15] |
Y. Wu, D. Ma, Q.K. Li, A.D. Stoica, W.L. Song, H. Wang, X.J. Liu, G.M. Stoica, G.Y. Wang, K. An, X.L. Wang, M. Li, and Z.P. Lu, Transformation-induced plasticity in bulk metallic glass composites evidenced by in situ neutron diffraction, Acta Mater., 124(2017), p. 478. doi: 10.1016/j.actamat.2016.11.029
|
[16] |
T.C. Chu, W.F. Ranson, and M.A. Sutton, Applications of digital-image-correlation techniques to experimental mechanics, Exp. Mech., 25(1985), No. 3, p. 232. doi: 10.1007/BF02325092
|
[17] |
N. Li, M.A. Sutton, X. Li, and H.W. Schreier, Full-field thermal deformation measurements in a scanning electron microscope by 2D digital image correlation, Exp. Mech., 48(2008), No. 5, p. 635. doi: 10.1007/s11340-007-9107-z
|
[18] |
B. Pan, K.M. Qian, H.M. Xie, and A. Asundi, Two-dimensional digital image correlation for in-plane displacement and strain measurement: A review, Meas. Sci. Technol., 20(2009), No. 6, art. No. 062001. doi: 10.1088/0957-0233/20/6/062001
|
[19] |
P. Bing, Digital image correlation for surface deformation measurement: Historical developments, recent advances and future goals, Meas. Sci. Technol., 29(2018), No. 8, art. No. 082001. doi: 10.1088/1361-6501/aac55b
|
[20] |
J. Zhang, P. Aimedieu, F. Hild, S. Roux, and T. Zhang, Complexity of shear localization in a Zr-based bulk metallic glass, Scripta Mater., 61(2009), No. 12, p. 1145. doi: 10.1016/j.scriptamat.2009.08.041
|
[21] |
Y. Wu, H. Bei, Y.L. Wang, Z.P. Lu, E.P. George, and Y.F. Gao, Deformation-induced spatiotemporal fluctuation, evolution and localization of strain fields in a bulk metallic glass, Int. J. Plast., 71(2015), p. 136. doi: 10.1016/j.ijplas.2015.05.006
|
[22] |
S.H. Hong, J.T. Kim, H.J. Park, J.Y. Suh, K.R. Lim, Y.S. Na, J.M. Park, and K.B. Kim, Work-hardening and plastic deformation behavior of Ti-based bulk metallic glass composites with bimodal sized B2 particles, Intermetallics, 62(2015), p. 36. doi: 10.1016/j.intermet.2015.03.005
|
[23] |
M.W. Chen, Mechanical behavior of metallic glasses: Microscopic understanding of strength and ductility, Annu. Rev. Mater. Res., 38(2008), p. 445. doi: 10.1146/annurev.matsci.38.060407.130226
|
[24] |
D. Schryvers, G.S. Firstov, J.W. Seo, J.V. Humbeeck, and Y.N. Koval, Unit cell determination in CuZr martensite by electron microscopy and X-ray diffraction, Scripta Mater., 36(1997), No. 10, p. 1119. doi: 10.1016/S1359-6462(97)00003-1
|
[25] |
J.W. Seo and D. Schryvers, TEM investigation of the microstructure and defects of CuZr martensite. Part I: Morphology and twin systems, Acta Mater., 46(1998), No. 4, p. 1165. doi: 10.1016/S1359-6454(97)00333-9
|
[26] |
A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys, Acta Mater., 48(2000), No. 1, p. 279. doi: 10.1016/S1359-6454(99)00300-6
|