Xueqin Liu, Xuejian Wang, Enyu Guo, Zongning Chen, Huijun Kang,  and Tongmin Wang, Influence of deformation on the corrosion behavior of LZ91 Mg–Li alloy, Int. J. Miner. Metall. Mater., 30(2023), No. 1, pp. 72-81. https://doi.org/10.1007/s12613-022-2466-8
Cite this article as:
Xueqin Liu, Xuejian Wang, Enyu Guo, Zongning Chen, Huijun Kang,  and Tongmin Wang, Influence of deformation on the corrosion behavior of LZ91 Mg–Li alloy, Int. J. Miner. Metall. Mater., 30(2023), No. 1, pp. 72-81. https://doi.org/10.1007/s12613-022-2466-8
Research Article

Influence of deformation on the corrosion behavior of LZ91 Mg–Li alloy

+ Author Affiliations
  • Corresponding authors:

    Enyu Guo    E-mail: eyguo@dlut.edu.cn

    Tongmin Wang    E-mail: tmwang@dlut.edu.cn

  • Received: 19 November 2021Revised: 6 March 2022Accepted: 7 March 2022Available online: 8 March 2022
  • The effect of rolling and forging on the microstructure and corrosion behavior of LZ91 alloy was investigated using an electron probe micro-analyzer, immersion and electrochemical tests. Results showed that the area fraction of the β-Li phase remained unchanged, and the grain size of the β-Li phase decreased after forging. The as-rolled forged alloy (FR-LZ91) exhibited the highest area fraction of the β-Li phase and the longest grains. The corrosion resistance of the forged LZ91 alloy increased due to grain refinement that prevented further corrosion during the immersion test. Among the experimental alloys, FR-LZ91 showed the highest resistance of corrosion film and charge transfer resistance values due to its protective film caused by the high area fraction of the β-Li phase.
  • loading
  • [1]
    W. Tao, M.L. Zhang, and R.Z. Wu, Effect of cerium on microstructure and mechanical properties of Mg–8Li–3Al alloy, J. Rare Earths, 25(2007), Suppl. 2, p. 194.
    [2]
    F. Guo, L.Y. Jiang, Y.L. Ma, et al., Strengthening a dual-phase Mg–Li alloy by strain-induced phase transformation at room temperature, Scripta. Mater., 179(2020), p. 16. doi: 10.1016/j.scriptamat.2020.01.001
    [3]
    H. Haferkamp, M. Niemeyer, R. Boehm, U. Holzkamp, C. Jaschik, and V. Kaese, Development, processing and applications range of magnesium lithium alloys, Mater. Sci. Forum, 350-351(2000), p. 31. doi: 10.4028/www.scientific.net/MSF.350-351.31
    [4]
    P. Metenier, G. González-Doncel, O.A. Ruano, J. Wolfenstine, and O.D. Sherby, Superplastic behavior of a fine-grained two-phase Mg–9wt.%Li alloy, Mater. Sci. Eng. A, 125(1990), No. 2, p. 195. doi: 10.1016/0921-5093(90)90169-4
    [5]
    Y. Yang, X. Chen, J.F. Nie, et al., Achieving ultra-strong Magnesium–lithium alloys by low-strain rotary swaging, Mater. Res. Lett., 9(2021), No. 6, p. 255. doi: 10.1080/21663831.2021.1891150
    [6]
    Z.M. Hua, M. Zha, Z.Y. Meng, et al., Rapid dislocation-mediated solute repartitioning towards strain-aging hardening in a fine-grained dilute magnesium alloy, Mater. Res. Lett., 10(2022), No. 1, p. 21. doi: 10.1080/21663831.2021.2009585
    [7]
    Y.Q. He, C.Q. Peng, Y. Feng, R.C. Wang, and J.F. Zhong, Effects of alloying elements on the microstructure and corrosion behavior of Mg–Li–Al–Y alloys, J. Alloys Compd., 834(2020), art. No. 154344. doi: 10.1016/j.jallcom.2020.154344
    [8]
    G.Y. Sha, X.G. Sun, T. Liu, Y.H. Zhu, and T. Yu, Effects of Sc addition and annealing treatment on the microstructure and mechanical properties of the as-rolled Mg–3Li alloy, J. Mater. Sci. Technol., 27(2011), No. 8, p. 753. doi: 10.1016/S1005-0302(11)60138-2
    [9]
    H. Takuda, H. Matsusaka, S. Kikuchi, and K. Kubota, Tensile properties of a few Mg–Li–Zn alloy thin sheets, J. Mater. Sci., 37(2002), No. 1, p. 51. doi: 10.1023/A:1013133521947
    [10]
    Y.W. Song, D.Y. Shan, R.S. Chen, and E.H. Han, Corrosion characterization of Mg–8Li alloy in NaCl solution, Corros. Sci., 51(2009), No. 5, p. 1087. doi: 10.1016/j.corsci.2009.03.011
    [11]
    A.V. Koltygin, V.E. Bazhenov, R.S. Khasenova, A.A. Komissarov, A.I. Bazlov, and V.A. Bautin, Effects of small additions of Zn on the microstructure, mechanical properties and corrosion resistance of WE43B Mg alloys, Int. J. Miner. Metall. Mater., 26(2019), No. 7, p. 858. doi: 10.1007/s12613-019-1801-1
    [12]
    Z.L. Zhao Y.H. Li, Y.F. Zhong, and Y.D. Liu, Corrosion performance of as-rolled Mg–8Li–xAl alloys, Int. J. Electrochem. Sci., 14(2019), p. 6394. doi: 10.20964/2019.07.55
    [13]
    Y.M. Wan, J.W. Liu, R.H. Yuan, M.H. Dai, and P.Y. Liu, Research of bio-corrosion behavior on as-cast LZ91 alloy, Min. Metall. Eng., 36(2016), No. 1, p. 117.
    [14]
    A. Bahmani, S. Arthanari, and K.S. Shin, Achieving a high corrosion resistant and high strength magnesium alloy using multi directional forging, J. Alloys Compd., 856(2021), art. No. 158077. doi: 10.1016/j.jallcom.2020.158077
    [15]
    F.F. Cao, K.K. Deng, K.B. Nie, J.W. Kang, and H.Y. Niu, Microstructure and corrosion properties of Mg–4Zn–2Gd–0.5Ca alloy influenced by multidirectional forging, J. Alloys Compd., 770(2019), p. 1208. doi: 10.1016/j.jallcom.2018.08.191
    [16]
    F.Y. Cao, Z.M. Shi, G.L. Song, M. Liu, M.S. Dargusch, and A. Atrens, Influence of hot rolling on the corrosion behavior of several Mg–X alloys, Corros. Sci., 90(2015), p. 176. doi: 10.1016/j.corsci.2014.10.012
    [17]
    C. Zhang, L. Wu, G.S. Huang, G.G. Wang, B. Jiang, and F.S. Pan, Microstructure and corrosion properties of Mg–0.5Zn–0.2Ca–0.2Ce alloy with different processing conditions, Rare Met., 40(2021), No. 7, p. 1924. doi: 10.1007/s12598-020-01478-2
    [18]
    T. Abu Leil, N. Hort, W. Dietzel, et al., Microstructure and corrosion behavior of Mg–Sn–Ca alloys after extrusion, Trans. Nonferrous Met. Soc. China, 19(2009), No. 1, p. 40. doi: 10.1016/S1003-6326(08)60225-3
    [19]
    D. Merson, E. Vasiliev, M. Markushev, and A. Vinogradov, On the corrosion of ZK60 magnesium alloy after severe plastic deformation, Lett. Mater., 7(2017), No. 4, p. 421. doi: 10.22226/2410-3535-2017-4-421-427
    [20]
    A. Siahsarani, F. Samadpour, M.H. Mortazavi, and G. Faraji, Microstructural, mechanical and corrosion properties of AZ91 magnesium alloy processed by a severe plastic deformation method of hydrostatic cyclic expansion extrusion, Met. Mater. Int., 27(2021), No. 8, p. 2933. doi: 10.1007/s12540-020-00828-0
    [21]
    T. Mineta and H. Sato, Simultaneously improved mechanical properties and corrosion resistance of Mg–Li–Al alloy produced by severe plastic deformation, Mater. Sci. Eng. A, 735(2018), p. 418. doi: 10.1016/j.msea.2018.08.077
    [22]
    W. Xu, N. Birbilis, G. Sha, et al., A high-specific-strength and corrosion-resistant magnesium alloy, Nat. Mater., 14(2015), No. 12, p. 1229. doi: 10.1038/nmat4435
    [23]
    D. Orlov, K.D. Ralston, N. Birbilis, and Y. Estrin, Enhanced corrosion resistance of Mg alloy ZK60 after processing by integrated extrusion and equal channel angular pressing, Acta Mater., 59(2011), No. 15, p. 6176. doi: 10.1016/j.actamat.2011.06.033
    [24]
    Q. Xiang, B. Jiang, Y.X. Zhang, et al., Effect of rolling-induced microstructure on corrosion behaviour of an as-extruded Mg–5Li–1Al alloy sheet, Corros. Sci., 119(2017), p. 14. doi: 10.1016/j.corsci.2017.02.009
    [25]
    ASTM International, ASTM G31-72: Standard Practice for Laboratory Immersion Corrosion Testing of Metals, ASTM International, West Conshohocken, 2004.
    [26]
    M.Q. Gao, Z.N. Chen, H.J. Kang, et al., Microstructural characteristics and mechanical behavior of B4Cp/6061Al composites synthesized at different hot-pressing temperatures, J. Mater. Sci. Technol., 35(2019), No. 8, p. 1523. doi: 10.1016/j.jmst.2019.03.040
    [27]
    J.Y. Wang, Mechanical properties of room temperature rolled MgLiAlZn alloy, J. Alloys Compd., 485(2009), No. 1-2, p. 241. doi: 10.1016/j.jallcom.2009.06.047
    [28]
    C.Q. Li, D.K. Xu, B.J. Wang, L.Y. Sheng, Y.X. Qiao, and E.H. Han, Natural ageing responses of duplex structured Mg-Li based alloys, Sci. Rep., 7(2017), art. No. 40078. doi: 10.1038/srep40078
    [29]
    A. Yamamoto, T. Ashida, Y. Kouta, K. Kim, S. Fukumoto, and H. Tsubakino, Precipitation in Mg–(4–13)%Li–(4–5)%Zn ternary alloys, J. Jpn. Inst. Light. Met., 51(2001), No. 11, p. 604. doi: 10.2464/jilm.51.604
    [30]
    L.N. Ma, Y. Yang, G. Zhou, et al., Effect of rolling reduction and annealing process on microstructure and corrosion behavior of LZ91 alloy sheet, Trans. Nonferrous Met. Soc. China, 30(2020), No. 7, p. 1816. doi: 10.1016/S1003-6326(20)65341-9
    [31]
    Y.H. Sun, R.C. Wang, C.Q. Peng, and X.F. Wang, Microstructure and corrosion behavior of as-homogenized Mg–xLi–3Al–2Zn–0.2Zr alloys (x = 5, 8, 11 wt%), Mater. Charact., 159(2020), art. No. 110031. doi: 10.1016/j.matchar.2019.110031
    [32]
    B.J. Wang, K. Xu, D.K. Xu, X. Cai, Y.X. Qiao, and L.Y. Sheng, Anisotropic corrosion behavior of hot-rolled Mg–8 wt.%Li alloy, J. Mater. Sci. Technol., 53(2020), p. 102. doi: 10.1016/j.jmst.2020.04.029
    [33]
    S. Jabbarzare, H.R. Bakhsheshi-Rad, A.A. Nourbakhsh, T. Ahmadi, and F. Berto, Effect of graphene oxide on the corrosion, mechanical and biological properties of Mg-based nanocomposite, Int. J. Miner. Metall. Mater., 29(2022), No. 2, p. 305. doi: 10.1007/s12613-020-2201-2
    [34]
    Z.M. Shi, M. Liu, and A. Atrens, Measurement of the corrosion rate of magnesium alloys using Tafel extrapolation, Corros. Sci., 52(2010), No. 2, p. 579. doi: 10.1016/j.corsci.2009.10.016
    [35]
    N.I.Z. Abidin, A.D. Atrens, D. Martin, and A. Atrens, Corrosion of high purity Mg, Mg2Zn0.2Mn, ZE41 and AZ91 in Hank’s solution at 37°C, Corros. Sci., 53(2011), No. 11, p. 3542. doi: 10.1016/j.corsci.2011.06.030
    [36]
    R.C. Zeng, L. Sun, Y.F. Zheng, H.Z. Cui, and E.H. Han, Corrosion and characterisation of dual phase Mg–Li–Ca alloy in Hank’s solution: The influence of microstructural features, Corros. Sci., 79(2014), p. 69. doi: 10.1016/j.corsci.2013.10.028
    [37]
    X. Liu, J.L. Xue, and S.Z. Liu, Discharge and corrosion behaviors of the α-Mg and β-Li based Mg alloys for Mg-air batteries at different current densities, Mater. Des., 160(2018), p. 138. doi: 10.1016/j.matdes.2018.09.011
    [38]
    B.J. Wang, D.K. Xu, X. Cai, Y.X. Qiao, and L.Y. Sheng, Effect of rolling ratios on the microstructural evolution and corrosion performance of an as-rolled Mg–8 wt.%Li alloy, J. Magnes. Alloys, 9(2021), No. 2, p. 560. doi: 10.1016/j.jma.2020.02.020
    [39]
    P.P. Wu, G.L. Song, Y.X. Zhu, Z.L. Feng, and D.J. Zheng, The corrosion of Al-supersaturated Mg matrix and the galvanic effect of secondary phase nanoparticles, Corros. Sci., 184(2021), art. No. 109410. doi: 10.1016/j.corsci.2021.109410
    [40]
    Q. Liu, W.L. Cheng, H. Zhang, C.X. Xu, and J.S. Zhang, The role of Ca on the microstructure and corrosion behavior of Mg–8Sn–1Al–1Zn–Ca alloys, J. Alloys Compd., 590(2014), p. 162. doi: 10.1016/j.jallcom.2013.12.077
    [41]
    C.Q. Li, Y.B. He, and H.P. Huang, Effect of lithium content on the mechanical and corrosion behaviors of HCP binary Mg–Li alloys, J. Magnes. Alloys, 9(2021), No. 2, p. 569. doi: 10.1016/j.jma.2020.02.022
    [42]
    H.B. Yang, L. Wu, B. Jiang, et al., Discharge properties of Mg–Sn–Y alloys as anodes for Mg-air batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1705. doi: 10.1007/s12613-021-2258-6
    [43]
    K.B. Tayyab, A. Farooq, A.A. Alvi, A.B. Nadeem, and K.M. Deen, Corrosion behavior of cold-rolled and post heat-treated 316L stainless steel in 0.9wt% NaCl solution, Int. J. Miner. Metall. Mater., 28(2021), No. 3, p. 440. doi: 10.1007/s12613-020-2054-8
    [44]
    J.F. Wang, Y. Li, S. Huang, and X.E. Zhou, Study of the corrosion behavior and the corrosion films formed on the surfaces of Mg–xSn alloys in 3.5wt.% NaCl solution, Appl. Surf. Sci., 317(2014), p. 1143. doi: 10.1016/j.apsusc.2014.09.040
    [45]
    S. Tang, T.Z. Xin, W.Q. Xu, et al., The composition-dependent oxidation film formation in Mg–Li–Al alloys, Corros. Sci., 187(2021), art. No. 109508. doi: 10.1016/j.corsci.2021.109508
    [46]
    C.Q. Li, D.K. Xu, Z.R. Zhang, and E.H. Han, Influence of the lithium content on the negative difference effect of Mg–Li alloys, J. Mater. Sci. Technol., 57(2020), p. 138. doi: 10.1016/j.jmst.2020.03.046
    [47]
    Y.W. Song, D.Y. Shan, R.S. Chen, and E.H. Han, Investigation of surface oxide film on magnesium lithium alloy, J. Alloys Compd., 484(2009), No. 1-2, p. 585. doi: 10.1016/j.jallcom.2009.04.137
    [48]
    L.H. Yang, Q.T. Jiang, M. Zheng, B.R. Hou, and Y.T. Li, Corrosion behavior of Mg–8Li–3Zn–Al alloy in neutral 3.5% NaCl solution, J. Magnes. Alloys, 4(2016), No. 1, p. 22. doi: 10.1016/j.jma.2015.12.002
    [49]
    Z.Y. Ding, L.Y. Cui, R.C. Zeng, et al., Exfoliation corrosion of extruded Mg–Li–Ca alloy, J. Mater. Sci. Technol., 34(2018), No. 9, p. 1550. doi: 10.1016/j.jmst.2018.05.014
    [50]
    D. Dhamodharan, P. Bhagat Singh, and S. Kumaran, Effect of grain size and secondary particle refinement on corrosion behavior of cross-rolled Mg–Li–Ca alloy, Trans. Indian Inst. Met., 72(2019), No. 6, p. 1631. doi: 10.1007/s12666-019-01721-0
    [51]
    A. Dobkowska, B. Adamczyk-Cieślak, J. Kubásek, et al., Microstructure and corrosion resistance of a duplex structured Mg–7.5Li–3Al–1Zn, J. Magnes. Alloys, 9(2021), No. 2, p. 467. doi: 10.1016/j.jma.2020.07.007
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Share Article

    Article Metrics

    Article Views(855) PDF Downloads(62) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return