• Jingshu Yuan, Yao Zhang, Xiaoyan Zhang, Liang Zhao, Hanlin Shen,  and Shengen Zhang, Template-free synthesis of core–shell Fe3O4@MoS2@mesoporous TiO2 magnetic photocatalyst for wastewater treatment, Int. J. Miner. Metall. Mater., 30(2023), No. 1, pp. 177-191. https://doi.org/10.1007/s12613-022-2473-9
    Cite this article as:
    Jingshu Yuan, Yao Zhang, Xiaoyan Zhang, Liang Zhao, Hanlin Shen,  and Shengen Zhang, Template-free synthesis of core–shell Fe3O4@MoS2@mesoporous TiO2 magnetic photocatalyst for wastewater treatment, Int. J. Miner. Metall. Mater., 30(2023), No. 1, pp. 177-191. https://doi.org/10.1007/s12613-022-2473-9
    Research Article

    Template-free synthesis of core–shell Fe3O4@MoS2@mesoporous TiO2 magnetic photocatalyst for wastewater treatment

    + Author Affiliations
    • Corresponding author:

      Shengen Zhang    E-mail: zhangshengen@mater.ustb.edu.cn

    • Received: 22 September 2021Revised: 16 March 2022Accepted: 16 March 2022Available online: 19 March 2022
    • TiO2 is the dominant and most widely researched photocatalyst for environmental remediation, however, the drawbacks, such as only responding to UV light (<5% of sunlight), low charge separation efficiency, and difficulties in recycling, have severely hindered its practical application. Herein, we synthesized magnetically separable Fe3O4@MoS2@mesoporous TiO2 (FMmT) photocatalysts via a simple, green, and template-free solvothermal method combined with ultrasonic hydrolysis. It is found that FMmT possesses a high specific surface area (55.09 m2·g−1), enhanced visible-light responsiveness (~521 nm), and remarkable photogenerated charge separation efficiency. In addition, the photocatalytic degradation efficiencies of FMmT for methylene blue (MB), rhodamine B (RhB), and tetracycline (TC) are 99.4%, 98.5%, and 89.3% within 300 min, respectively. The corresponding degradation rates are 4.5, 4.3, and 3.1 times higher than those of pure TiO2 separately. Owing to the high saturation magnetization (43.1 A·m2·kg−1), FMmT can achieve effective recycling with an applied magnetic field. The improved photocatalytic activity is closely related to the effective transport of photogenerated electrons by the active interlayer MoS2 and the electron–hole separation caused by the MoS2@TiO2 heterojunction. Meanwhile, the excellent light-harvesting ability and abundant reactive sites of the mesoporous TiO2 shell further boost the photocatalytic efficiency of FMmT. This work provides a new approach and some experimental basis for the design and performance improvement of magnetic photocatalysts by innovatively incorporating MoS2 as the active interlayer and integrating it with a mesoporous shell.
    • loading
    • [1]
      J. Schneider, M. Matsuoka, M. Takeuchi, et al., Understanding TiO2 photocatalysis: Mechanisms and materials, Chem. Rev., 114(2014), No. 19, p. 9919. doi: 10.1021/cr5001892
      [2]
      W. Li, A. Elzatahry, D. Aldhayan, and D. Zhao, Core–shell structured titanium dioxide nanomaterials for solar energy utilization, Chem. Soc. Rev., 47(2018), No. 22, p. 8203. doi: 10.1039/C8CS00443A
      [3]
      V. Kumaravel, S. Mathew, J. Bartlett, and S.C. Pillai, Photocatalytic hydrogen production using metal doped TiO2: A review of recent advances, Appl. Catal. B, 244(2019), p. 1021. doi: 10.1016/j.apcatb.2018.11.080
      [4]
      J. Sun, M. Zhang, Z.F. Wang, et al., Synthesis of anatase TiO2 with exposed {001} and {101} facets and photocatalytic activity, Rare Met., 38(2019), No. 4, p. 287. doi: 10.1007/s12598-014-0329-9
      [5]
      M.Q. Hu, Z.P. Xing, Y. Cao, et al., Ti3+ self-doped mesoporous black TiO2/SiO2/g-C3N4 sheets heterojunctions as remarkable visible-lightdriven photocatalysts, Appl. Catal. B, 226(2018), p. 499. doi: 10.1016/j.apcatb.2017.12.069
      [6]
      N. Guo, Y. Zeng, H.Y. Li, X.J. Xu, H.W. Yu, and X.R. Han, Novel mesoporous TiO2@g-C3N4 hollow core@shell heterojunction with enhanced photocatalytic activity for water treatment and H2 production under simulated sunlight, J. Hazard. Mater., 353(2018), p. 80. doi: 10.1016/j.jhazmat.2018.03.044
      [7]
      X.F. Zeng, J.S. Wang, Y.N. Zhao, W.L. Zhang, and M.H. Wang, Construction of TiO2-pillared multilayer graphene nanocomposites as efficient photocatalysts for ciprofloxacin degradation, Int. J. Miner. Metall. Mater., 28(2021), No. 3, p. 503. doi: 10.1007/s12613-020-2193-y
      [8]
      D.D. Wang, D.L. Han, Z. Shi, et al., Optimized design of three-dimensional multi-shell Fe3O4/SiO2/ZnO/ZnSe microspheres with type II heterostructure for photocatalytic applications, Appl. Catal. B, 227(2018), p. 61. doi: 10.1016/j.apcatb.2018.01.002
      [9]
      T. Tatarchuk, I. Mironyuk, V. Kotsyubynsky, A. Shyichuk, M. Myslin, and V. Boychuk, Structure, morphology and adsorption properties of titania shell immobilized onto cobalt ferrite nanoparticle core, J. Mol. Liq., 297(2020), art. No. 111757. doi: 10.1016/j.molliq.2019.111757
      [10]
      A. Kumar, M. Khan, L.P. Fang, and I.M.C. Lo, Visible-light-driven N-TiO2@SiO2@Fe3O4 magnetic nanophotocatalysts: Synthesis, characterization, and photocatalytic degradation of PPCPs, J. Hazard. Mater., 370(2019), p. 108. doi: 10.1016/j.jhazmat.2017.07.048
      [11]
      A.M. Chávez, R.R. Solís, and F.J. Beltrán, Magnetic graphene TiO2-based photocatalyst for the removal of pollutants of emerging concern in water by simulated sunlight aided photocatalytic ozonation, Appl. Catal. B, 262(2020), art. No. 118275. doi: 10.1016/j.apcatb.2019.118275
      [12]
      M.I. Rahmah, R.S. Sabry, and W.J. Aziz, Preparation and photocatalytic property of Fe2O3/ZnO composites with superhydrophobicity, Int. J. Miner. Metall. Mater., 28(2021), No. 6, p. 1072. doi: 10.1007/s12613-020-2096-y
      [13]
      M.S. Abdel-Wahed, A.S. El-Kalliny, M.I. Badawy, M.S. Attia, and T.A. Gad-Allah, Core double-shell MnFe2O4@rGO@TiO2 superparamagnetic photocatalyst for wastewater treatment under solar light, Chem. Eng. J., 382(2020), art. No. 122936. doi: 10.1016/j.cej.2019.122936
      [14]
      H. Zangeneh, A.A. Zinatizadeh, S. Zinadini, M. Feyzi, and D.W. Bahnemann, Preparation and characterization of a novel photocatalytic self-cleaning PES nanofiltration membrane by embedding a visible-driven photocatalyst boron doped-TiO2–SiO2/CoFe2O4 nanoparticles, Sep. Purif. Technol., 209(2019), p. 764. doi: 10.1016/j.seppur.2018.09.030
      [15]
      T.B. Nguyen, C.P. Huang, and R.A. Doong, Photocatalytic degradation of bisphenol A over a ZnFe2O4/TiO2 nanocomposite under visible light, Sci. Total Environ., 646(2019), p. 745. doi: 10.1016/j.scitotenv.2018.07.352
      [16]
      M.G. Sibi, D. Verma, and J. Kim, Magnetic core–shell nanocatalysts: Promising versatile catalysts for organic and photocatalytic reactions, Catal. Rev., 62(2020), No. 2, p. 163. doi: 10.1080/01614940.2019.1659555
      [17]
      E. Mrotek, S. Dudziak, I. Malinowska, D. Pelczarski, Z. Ryżyńska, and A. Zielińska-Jurek, Improved degradation of etodolac in the presence of core–shell ZnFe2O4/SiO2/TiO2 magnetic photocatalyst, Sci. Total Environ., 724(2020), art. No. 138167. doi: 10.1016/j.scitotenv.2020.138167
      [18]
      A. Pourzad, H.R. Sobhi, M. Behbahani, A. Esrafili, R.R. Kalantary, and M. Kermani, Efficient visible light-induced photocatalytic removal of paraquat using N-doped TiO2@SiO2@Fe3O4 nanocomposite, J. Mol. Liq., 299(2020), art. No. 112167. doi: 10.1016/j.molliq.2019.112167
      [19]
      Z.C. Dai, D.N. Li, L. Chi, et al., Preparation of porphyrin sensitized three layers magnetic nanocomposite Fe3O4@SiO2@TiO2 as an efficient photocatalyst, Mater. Lett., 241(2019), p. 239. doi: 10.1016/j.matlet.2019.01.126
      [20]
      A. Aghamali, M. Khosravi, H. Hamishehkar, N. Modirshahla, and M.A. Behnajady, Preparation of novel high performance recoverable and natural sunlight-driven nanocomposite photocatalyst of Fe3O4/C/TiO2/N-CQDs, Mater. Sci. Semicond. Process., 87(2018), p. 142. doi: 10.1016/j.mssp.2018.07.018
      [21]
      W.X. Wang, K.J. Xiao, L. Zhu, Y.R. Yin, and Z.M. Wang, Graphene oxide supported titanium dioxide & ferroferric oxide hybrid, a magnetically separable photocatalyst with enhanced photocatalytic activity for tetracycline hydrochloride degradation, RSC Adv., 7(2017), No. 34, p. 21287. doi: 10.1039/C6RA28224E
      [22]
      J.T. Bi, X. Huang, J.K. Wang, et al., Oil-phase cyclic magnetic adsorption to synthesize Fe3O4@C@TiO2-nanotube composites for simultaneous removal of Pb(II) and Rhodamine B, Chem. Eng. J., 366(2019), p. 50. doi: 10.1016/j.cej.2019.02.017
      [23]
      B. MirzaHedayat, M. Noorisepehr, E. Dehghanifard, A. Esrafili, and R. Norozi, Evaluation of photocatalytic degradation of 2,4-Dinitrophenol from synthetic wastewater using Fe3O4@SiO2@TiO2/rGO magnetic nanoparticles, J. Mol. Liq., 264(2018), p. 571. doi: 10.1016/j.molliq.2018.05.102
      [24]
      A. Kumar, M. Khan, X.K. Zeng, and I.M.C. Lo, Development of g-C3N4/TiO2/Fe3O4@SiO2 heterojunction via sol–gel route: A magnetically recyclable direct contact Z-scheme nanophotocatalyst for enhanced photocatalytic removal of ibuprofen from real sewage effluent under visible light, Chem. Eng. J., 353(2018), p. 645. doi: 10.1016/j.cej.2018.07.153
      [25]
      N. Guo, H.Y. Li, X.J. Xu, and H.W. Yu, Hierarchical Fe3O4@MoS2/Ag3PO4 magnetic nanocomposites: Enhanced and stable photocatalytic performance for water purification under visible light irradiation, Appl. Surf. Sci., 389(2016), p. 227. doi: 10.1016/j.apsusc.2016.07.099
      [26]
      D.Z. Lu, H.Q. Fan, K.K. Kondamareddy, et al., Highly efficient visible-light-induced photocatalytic production of hydrogen for magnetically retrievable Fe3O4@SiO2@MoS2/g-C3N4 hierarchical microspheres, ACS Sustainable Chem. Eng., 6(2018), No. 8, p. 9903. doi: 10.1021/acssuschemeng.8b01118
      [27]
      Y.Q. Sun, J.B. Tan, H.H. Lin, et al., A facile strategy for the synthesis of ferroferric oxide/titanium dioxide/molybdenum disulfide heterostructures as a magnetically separable photocatalyst under visible-light, J. Colloid Interface Sci., 516(2018), p. 138. doi: 10.1016/j.jcis.2018.01.031
      [28]
      X.F. Liu, Z.P. Xing, Y. Zhang, et al., Fabrication of 3D flower-like black N-TiO2−x@MoS2 for unprecedented-high visible-light-driven photocatalytic performance, Appl. Catal. B, 201(2017), p. 119. doi: 10.1016/j.apcatb.2016.08.031
      [29]
      B. Chen, Y.H. Meng, J.W. Sha, C. Zhong, W.B. Hu, and N.Q. Zhao, Preparation of MoS2/TiO2 based nanocomposites for photocatalysis and rechargeable batteries: Progress, challenges, and perspective, Nanoscale, 10(2018), No. 1, p. 34. doi: 10.1039/C7NR07366F
      [30]
      J.Z. Lyu, J.W. Shao, Y.H. Wang, et al., Construction of a porous core–shell homojunction for the photocatalytic degradation of antibiotics, Chem. Eng. J., 358(2019), p. 614. doi: 10.1016/j.cej.2018.10.085
      [31]
      H.L. Xiong, L.L. Wu, Y. Liu, et al., Controllable synthesis of mesoporous TiO2 polymorphs with tunable crystal structure for enhanced photocatalytic H2 production, Adv. Energy Mater., 9(2019), No. 31, art. No. 1901634. doi: 10.1002/aenm.201901634
      [32]
      H.L. Tang, Y. Ren, S.H. Wei, G. Liu, and X.X. Xu, Preparation of 3D ordered mesoporous anatase TiO2 and their photocatalytic activity, Rare Met., 38(2019), No. 5, p. 453. doi: 10.1007/s12598-019-01211-8
      [33]
      Y.W. Ma, Y.F. Lu, G.T. Hai, et al., Bidentate carboxylate linked TiO2 with NH2-MIL-101(Fe) photocatalyst: A conjugation effect platform for high photocatalytic activity under visible light irradiation, Sci. Bull., 65(2020), No. 8, p. 658. doi: 10.1016/j.scib.2020.02.001
      [34]
      M.A. Elkodous, G.S. El-Sayyad, A.E. Mohamed, et al., Layer-by-layer preparation and characterization of recyclable nanocomposite (CoXNi1−XFe2O4; X = 0.9/SiO2/TiO2), J. Mater. Sci. Mater. Electron., 30(2019), No. 9, p. 8312. doi: 10.1007/s10854-019-01149-8
      [35]
      F.P. Ran, Y.L. Zou, Y.X. Xu, X.Y. Liu, and H.X. Zhang, Fe3O4@MoS2@PEI-facilitated enzyme tethering for efficient removal of persistent organic pollutants in water, Chem. Eng. J., 375(2019), art. No. 121947. doi: 10.1016/j.cej.2019.121947
      [36]
      D.D. Wang, J.H. Yang, X.Y. Li, et al., Effect of thickness and microstructure of TiO2 shell on photocatalytic performance of magnetic separable Fe3O4/SiO2/mTiO2 core–shell composites, Phys. Status Solidi A, 214(2017), No. 3, art. No. 1600665. doi: 10.1002/pssa.201600665
      [37]
      B.J. Guo, K. Yu, H. Fu, et al., Firework-shaped TiO2 microspheres embedded with few-layer MoS2 as an anode material for excellent performance lithium-ion batteries, J. Mater. Chem. A, 3(2015), No. 12, p. 6392. doi: 10.1039/C4TA06607C
      [38]
      W. Li, M.B. Liu, S.S. Feng, et al., Template-free synthesis of uniform magnetic mesoporous TiO2 nanospindles for highly selective enrichment of phosphopeptides, Mater. Horiz., 1(2014), No. 4, p. 439. doi: 10.1039/c4mh00030g
      [39]
      Y.Q. Yu, L. Yan, J.M. Cheng, and C.Y. Jing, Mechanistic insights into TiO2 thickness in Fe3O4@TiO2–GO composites for enrofloxacin photodegradation, Chem. Eng. J., 325(2017), p. 647. doi: 10.1016/j.cej.2017.05.092
      [40]
      Y.P. Liu, Y.H. Li, F. Peng, et al., 2H- and 1T- mixed phase few-layer MoS2 as a superior to Pt co-catalyst coated on TiO2 nanorod arrays for photocatalytic hydrogen evolution, Appl. Catal. B, 241(2019), p. 236. doi: 10.1016/j.apcatb.2018.09.040
      [41]
      A.D. Fortes, E. Suard, and K.S. Knight, Negative linear compressibility and massive anisotropic thermal expansion in methanol monohydrate, Science, 331(2011), No. 6018, p. 742. doi: 10.1126/science.1198640
      [42]
      Z.Z. Li, H.Z. Li, S.J. Wang, F. Yang, and W. Zhou, Mesoporous black TiO2/MoS2/Cu2S hierarchical tandem heterojunctions toward optimized photothermal-photocatalytic fuel production, Chem. Eng. J., 427(2022), art. No. 131830. doi: 10.1016/j.cej.2021.131830
      [43]
      L. Guo, Z. Yang, K. Marcus, et al., MoS2/TiO2 heterostructures as nonmetal plasmonic photocatalysts for highly efficient hydrogen evolution, Energy Environ. Sci., 11(2018), No. 1, p. 106. doi: 10.1039/C7EE02464A
      [44]
      D.C. Nguyen, T.L.L. Doan, S. Prabhakaran, et al., Hierarchical Co and Nb dual-doped MoS2 nanosheets shelled micro-TiO2 hollow spheres as effective multifunctional electrocatalysts for HER, OER, and ORR, Nano Energy, 82(2021), art. No. 105750. doi: 10.1016/j.nanoen.2021.105750
      [45]
      D.D. Wang, J.H. Yang, X.Y. Li, H.J. Zhai, J.H. Lang, and H. Song, Preparation of magnetic Fe3O4@SiO2@mTiO2–Au spheres with well-designed microstructure and superior photocatalytic activity, J. Mater. Sci., 51(2016), No. 21, p. 9602. doi: 10.1007/s10853-016-0167-2
      [46]
      B. Peng, X.W. Meng, F.Q. Tang, X.L. Ren, D. Chen, and J. Ren, General synthesis and optical properties of monodisperse multifunctional metal-ion-doped TiO2 hollow particles, J. Phys. Chem. C, 113(2009), No. 47, p. 20240. doi: 10.1021/jp906937e
      [47]
      J. Jin, J.G. Yu, D.P. Guo, C. Cui, and W. Ho, A hierarchical Z-scheme CdS–WO3 photocatalyst with enhanced CO2 reduction activity, Small, 11(2015), No. 39, p. 5262. doi: 10.1002/smll.201500926
      [48]
      Z.F. Jiang, W.M. Wan, W. Wei, et al., Gentle way to build reduced titanium dioxide nanodots integrated with graphite-like carbon spheres: From DFT calculation to experimental measurement, Appl. Catal. B, 204(2017), p. 283. doi: 10.1016/j.apcatb.2016.11.044
      [49]
      X. Bai, Y.L. Ji, M.Y. She, et al., Oxygen vacancy mediated charge transfer expediting over GQDs/TiO2 for enhancing photocatalytic removal of Cr (VI) and RhB synchronously, J. Alloys Compd., 891(2022), art. No. 161872. doi: 10.1016/j.jallcom.2021.161872
      [50]
      Y. Zhang, J.S. Yuan, L. Zhao, et al., Boosting exciton dissociation and charge transfer in P-doped 2D porous g-C3N4 for enhanced H2 production and molecular oxygen activation, Ceram. Int., 48(2022), No. 3, p. 4031. doi: 10.1016/j.ceramint.2021.10.193
      [51]
      S.Q. Yu, B. Han, Y.C. Lou, Z. Liu, G.D. Qian, and Z.Y. Wang, Rational design and fabrication of TiO2 nano heterostructure with multi-junctions for efficient photocatalysis, Int. J. Hydrogen Energy, 45(2020), No. 53, p. 28640. doi: 10.1016/j.ijhydene.2020.07.184
      [52]
      L. Liu, S.L. Jiao, Y.T. Peng, and W. Zhou, A green design for lubrication: Multifunctional system containing Fe3O4@MoS2 nanohybrid, ACS Sustainable Chem. Eng., 6(2018), No. 6, p. 7372. doi: 10.1021/acssuschemeng.7b04801
      [53]
      Y.F. Zhao, R. Wu, H. Yu, et al., Magnetic solid-phase extraction of sulfonamide antibiotics in water and animal-derived food samples using core–shell magnetite and molybdenum disulfide nanocomposite adsorbent, J. Chromatogr. A, 1610(2020), art. No. 460543. doi: 10.1016/j.chroma.2019.460543
      [54]
      Y.X. Wang, L. Rao, P.F. Wang, Z.Y. Shi, and L.X. Zhang, Photocatalytic activity of N-TiO2/O-doped N vacancy g-C3N4 and the intermediates toxicity evaluation under tetracycline hydrochloride and Cr(VI) coexistence environment, Appl. Catal. B, 262(2020), art. No. 118308. doi: 10.1016/j.apcatb.2019.118308
      [55]
      A. Krishnan, P.V. Vishwanathan, A.C. Mohan, R. Panchami, S. Viswanath, and A.V. Krishnan, Tuning of photocatalytic performance of CeO2–Fe2O3 composite by Sn-doping for the effective degradation of methlene blue (MB) and methyl orange (MO) dyes, Surf. Interfaces, 22(2021), art. No. 100808. doi: 10.1016/j.surfin.2020.100808
      [56]
      M. Rafieezadeh and A.H. Kianfar, Synthesis and characterization of the magnetic submicrocube Fe3O4/TiO2/CuO as a reusable photocatalyst for the degradation of dyes under sunlight irradiation, Environ. Technol. Innov., 23(2021), art. No. 101756. doi: 10.1016/j.eti.2021.101756
      [57]
      A. Raza, H.L. Shen, A.A. Haidry, and S.S. Cui, Hydrothermal synthesis of Fe3O4/TiO2/g-C3N4: Advanced photocatalytic application, Appl. Surf. Sci., 488(2019), p. 887. doi: 10.1016/j.apsusc.2019.05.210
      [58]
      N. Shao, J.N. Wang, D.D. Wang, and P. Corvini, Preparation of three-dimensional Ag3PO4/TiO2@MoS2 for enhanced visible-light photocatalytic activity and anti-photocorrosion, Appl. Catal. B, 203(2017), p. 964. doi: 10.1016/j.apcatb.2016.11.008
      [59]
      W. Ou, J.Q. Pan, Y.Y. Liu, et al., Two-dimensional ultrathin MoS2-modified black Ti3+–TiO2 nanotubes for enhanced photocatalytic water splitting hydrogen production, J. Energy Chem., 43(2020), p. 188. doi: 10.1016/j.jechem.2019.08.020
      [60]
      F.L. Wang, Y.F. Wang, Y.P. Feng, et al., Novel ternary photocatalyst of single atom-dispersed silver and carbon quantum dots co-loaded with ultrathin g-C3N4 for broad spectrum photocatalytic degradation of naproxen, Appl. Catal. B, 221(2018), p. 510. doi: 10.1016/j.apcatb.2017.09.055
      [61]
      Y. Bai, L.Q. Ye, T. Chen, et al., Facet-dependent photocatalytic N2 fixation of bismuth-rich Bi5O7I nanosheets, ACS Appl. Mater. Interfaces, 8(2016), No. 41, p. 27661. doi: 10.1021/acsami.6b08129
      [62]
      C.Y. Liu, Y.H. Zhang, F. Dong, et al., Chlorine intercalation in graphitic carbon nitride for efficient photocatalysis, Appl. Catal. B, 203(2017), p. 465. doi: 10.1016/j.apcatb.2016.10.002
      [63]
      Z. Zhou, J.X. Gao, G.S. Zhang, et al., Optimizing graphene–TiO2 interface properties via Fermi level modulation for photocatalytic degradation of volatile organic compounds, Ceram. Int., 46(2020), No. 5, p. 5887. doi: 10.1016/j.ceramint.2019.11.040
      [64]
      J.Z. Ma, C.X. Wang, and H. He, Enhanced photocatalytic oxidation of NO over g-C3N4–TiO2 under UV and visible light, Appl. Catal. B, 184(2016), p. 28. doi: 10.1016/j.apcatb.2015.11.013
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(15)  / Tables(2)

      Share Article

      Article Metrics

      Article Views(2102) PDF Downloads(112) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return