Xianping Luo, Kunzhong He, Yan Zhang, Pengyu He, and Yongbing Zhang, A review of intelligent ore sorting technology and equipment development, Int. J. Miner. Metall. Mater., 29(2022), No. 9, pp. 1647-1655. https://doi.org/10.1007/s12613-022-2477-5
Cite this article as:
Xianping Luo, Kunzhong He, Yan Zhang, Pengyu He, and Yongbing Zhang, A review of intelligent ore sorting technology and equipment development, Int. J. Miner. Metall. Mater., 29(2022), No. 9, pp. 1647-1655. https://doi.org/10.1007/s12613-022-2477-5
Invited Review

A review of intelligent ore sorting technology and equipment development

+ Author Affiliations
  • Corresponding author:

    Xianping Luo    E-mail: luoxianping9491@163.com

  • Received: 16 December 2021Revised: 21 March 2022Accepted: 21 March 2022Available online: 23 March 2022
  • Under the background of increasingly scarce ore worldwide and increasingly fierce market competition, developing the mining industry could be strongly restricted. Intelligent ore sorting equipment not only improves ore use and enhances the economic benefits of enterprises but also increases the ore grade and lessens the grinding cost and tailings production. However, long-term research on intelligent ore sorting equipment found that the factors affecting sorting efficiency mainly include ore information identification technology, equipment sorting actuator, and information processing algorithm. The high precision, strong anti-interference capability, and high speed of these factors guarantee the separation efficiency of intelligent ore sorting equipment. Color ore sorter, X-ray ore transmission sorter, dual-energy X-ray transmission ore sorter, X-ray fluorescence ore sorter, and near-infrared ore sorter have been successfully developed in accordance with the different characteristics of minerals while ensuring the accuracy of equipment sorting and improving the equipment sorting efficiency. With the continuous improvement of mine automation level, the application of online element rapid analysis technology with high speed, high precision, and strong anti-interference capability in intelligent ore sorting equipment will become an inevitable trend of equipment development in the future. Laser-induced breakdown spectroscopy, transient γ neutron activation analysis, online Fourier transform infrared spectroscopy, and nuclear magnetic resonance techniques will promote the development of ore sorting equipment. In addition, the improvement and joint application of additional high-speed and high-precision operation algorithms (such as peak area, principal component analysis, artificial neural network, partial least squares, and Monte Carlo library least squares methods) are an essential part of the development of intelligent ore sorting equipment in the future.
  • loading
  • [1]
    L. Panda, P.K. Banerjee, S.K. Biswal, R. Venugopal, and N.R. Mandre, Artificial neural network approach to assess selective flocculation on hematite and kaolinite, Int. J. Miner. Metall. Mater., 21(2014), No. 7, p. 637. doi: 10.1007/s12613-014-0952-3
    G. Qian, On the development and utilization of low grade mineral resources, China Met. Bulletin., 2020, No. 1, p. 49.
    T. Henckens, Scarce mineral resources: Extraction, consumption and limits of sustainability, Resour. Conserv. Recycl., 169(2021), art. No. 105511. doi: 10.1016/j.resconrec.2021.105511
    J. Lessard, J. de Bakker, and L. McHugh, Development of ore sorting and its impact on mineral processing economics, Miner. Eng., 65(2014), p. 88. doi: 10.1016/j.mineng.2014.05.019
    X.P. Luo, X.H. Ning, T. Wang, P.C. Wang, and P.Y. He, Development and application of intelligent picking technology, Met. Mine, 2019, No. 7, p. 113.
    B. Sun, J.T. Dai, K.K. Huang, C.H. Yang, and W.H. Gui, Smart manufacturing of nonferrous metallurgical processes: Review and perspectives, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 611. doi: 10.1007/s12613-022-2448-x
    H. Wotruba and C. Robben, Sensor-based ore sorting in 2020, Automatisierungstechnik, 68(2020), No. 4, p. 231. doi: 10.1515/auto-2019-0060
    J. Lessard, W. Sweetser, K. Bartram, J. Figueroa, and L. McHugh, Bridging the gap: Understanding the economic impact of ore sorting on a mineral processing circuit, Miner. Eng., 91(2016), p. 92. doi: 10.1016/j.mineng.2015.08.019
    F. Zheng, Development of photoelectric sorter abroad, Nonferrous Met. Mineral Process., 1980, No. 2, p. 38.
    T. Ding, H.P. Xu, J.S. Wang, D.R. Liu and Z.W. Wang, Research of online ore sorter based on vision recognition technology, Equip. Manuf. Technol., 2014, No. 7, p. 106.
    Z.H. Wu, Ore pre concentration and discarding waste technology and selection of intelligent photoelectric beneficiation equipment, World Nonferrous Met., 2020, No. 16, p. 202.
    Robben and Wotruba, Sensor-based ore sorting technology in mining—Past, present and future, Minerals, 9(2019), No. 9, art. No. 523. doi: 10.3390/min9090523
    H. Wotruba and H. Harbeck, Sensor-based sorting, [in] Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH & Co. KgaA, Weinheim, 2012.
    A. Cardenas-Vera, M. Hesse, R. Möckel, R. Gerhard Merker, T. Heinig, and Q.V. Phan, Investigation of Sensor-Based sorting and selective comminution for pre-concentration of an unusual parisite-rich REE ore, South Namxe, Vietnam, Miner. Eng., 177(2022), art. No. 107371. doi: 10.1016/j.mineng.2021.107371
    X.S. Wu, W. Zhang, X.K. Zhao, X. Gao and W.B. Huang, New development trend of sensor-based ore pre-concentration technology, China Min. Mag., 31(2022), No. 6, p. 10.
    D.Y. Zhu, D.Y. Liang, P.W. Shi, H.X. Ran, and H.L. Shang, Research and development of ore sorting technology and equipments, Min. Process. Equip., 44(2016), No. 7, p. 5.
    H.J. Wang, X.P. Liu, G. Wang, and S. Han, Optimization of mobile manipulator sorting path based on improved genetic algorithm, J. Beijing Univ. Posts Telecommun., 43(2020), No. 5, p. 34.
    Y.F. Wu, L.R. Gao, B. Zhang, H.N. Zhao, and J. Li, Real-time implementation of optimized maximum noise fraction transform for feature extraction of hyperspectral images, J. Appl. Remote Sensing, 8(2014), No. 1, art. No. 084797.
    S.W. Wu, J. Yang, and G.M. Cao, Prediction of the Charpy V-Notch impact energy of low carbon steel using a shallow neural network and deep learning, Int. J. Miner. Metall. Mater., 28(2021), No. 8, p. 1309. doi: 10.1007/s12613-020-2168-z
    M. Li, A. Caushaj, R. Silva, and D. Lowther, A neural network for electromagnetic based ore sorting, COMPEL Int. J. Comput. Math. Electr. Electron. Eng., 37(2018), No. 2, p. 691. doi: 10.1108/COMPEL-12-2016-0529
    C. Bergmann, Developments in Ore Sorting Technologies, Council for Mineral Technology, Randburg, 2009, p. 75.
    C.Y. Xu, The application of photoelectric color separator and the optimization in mineral separation process of some mine, World Nonferrous Met., 2016, No. 17, p. 31.
    X.X. Shao and X.P. Ji, Separation of talc by photoelectric separation technology, Nonmetallic Min., 1989, No. 5, p. 22.
    C. Robben, P. Condori, A. Pinto, R. Machaca, and A. Takala, X-ray-transmission based ore sorting at the San Rafael tin mine, Miner. Eng., 145(2020), art. No. 105870. doi: 10.1016/j.mineng.2019.105870
    X.W. Yu, M. Yang, S.R. Mao, F.T. Yu and T. He, Research on application of X-ray separation technology in beneficiation of phosphate rock, Ind. Miner. Process., 49(2020), No. 9, p. 31.
    N. Li, S.H. Zhang, H. Peng, L. Fu, and Y.J. Lu, Application practice and evaluation of photoelectric separation in a phosphate mining industry, Non Met. Mines, 41(2018), No. 2, p. 73.
    N. Jia, Discarding experiment on XRT ray brainpower separator in a scheelite concentrator in Hunan Province, Mod. Min., 34(2018), No. 7, p. 154.
    W. Peng and P.Y. He, Pre-selection test and practice of a antimony ore using the X-ray intelligent concentrator, Met. Mine, 2019, No. 9, p. 92.
    W.P. Di and Z.H. Wu, Preconcentration and discarding technology of intelligent photoelectric dressing equipment, Nonferrous Met. Miner. Process., 2021, No. 1, p. 117.
    H. Gao, J.Y. Wang, X.F. Zhang, and D.S. Zhao, Image processing design of mineral identification system based on dual-energy X-ray transmission, Nonferrous Met. Miner. Process., 2021, No. 1, p. 101.
    M.G. Xu and X.D. Bao, Object classification suppressed thickness effect based on pseudo dual-energy X-ray transmission imaging system, Chin. J. Electron Devices, 30(2007), No. 1, p. 219.
    L.N. Cui and X.Q. Peng, Test study on dual energy X-ray transmission pre-concentration of a low-grade lead–zinc mine in Guangxi, Min. Eng., 18(2020), No. 4, p. 30.
    Y. Tong, Technical Amenability Study of Laboratory-scale Sensor-based Ore Sorting On a Mississippi Valley Type Lead–Zinc Ore [Dissertation], University of British Columbia, Vancouver, 2012, p. 41.
    V. Rebuffel and J.M. Dinten, Dual-energy X-ray imaging: Benefits and limits, Insight Non Destr. Test. Cond. Monit., 49(2007), No. 10, p. 589. doi: 10.1784/insi.2007.49.10.589
    G.Z. Li, B. Klein, C.B. Sun, and J. Kou, Lab-scale error analysis on X-ray fluorecence sensing for bulk ore sorting, Miner. Eng., 164(2021), art. No. 106812. doi: 10.1016/j.mineng.2021.106812
    L.X. Li, G.Z. Li, H.Z. Li, G.Q. Li, D. Zhang, and B. Klein, Bench-scale insight into the amenability of case barren copper ores towards XRF-based bulk sorting, Miner. Eng., 121(2018), p. 129. doi: 10.1016/j.mineng.2018.02.023
    G.Z. Li, B. Klein, C.B. Sun, and J. Kou, Applying Receiver–Operating–Characteristic (ROC) to bulk ore sorting using XRF, Miner. Eng., 146(2020), art. No. 106117. doi: 10.1016/j.mineng.2019.106117
    W.Z. Yin, Y. Wu, Y.X. Han, et al., The theory and application of X-ray separation technology, China Min. Mag., 20(2011), No. 12, p. 88.
    M.B. Liu, W.Z. Yin, T.X. Han, and Z.Q. Sun, The study on the X-ray separator and its pre-sorting test of the low grade ore of Mo and Ni, Min. Metall., 21(2012), No. 4, p. 26.
    M. Dalm, M.W.N. Buxton, and F.J.A. Ruitenbeek, Ore–waste discrimination in epithermal deposits using near-infrared to short-wavelength infrared (NIR-SWIR) hyperspectral imagery, Math. Geosci., 51(2019), No. 7, p. 849. doi: 10.1007/s11004-018-9758-6
    E. Gülcan, A novel approach for sensor based sorting performance determination, Miner. Eng., 146(2020), art. No. 106130. doi: 10.1016/j.mineng.2019.106130
    Y.M. Liu, D. Chen, Q.F. Li, and K.X. Xu, Novel multi-scale modeling method for near infrared spectral measurement, Nanotechnol. Precis. Eng., 12(2014), No. 5, p. 381.
    M.R. Robben, H. Wotruba, and J. Heizmann, Sensor-based separation of carbonates, [in] IMPC 2012: XXVI International Mineral Processing Congress, New Delhi, 2012, p. 04496.
    S. Iyakwari, H.J. Glass, and P.B. Kowalczuk, Potential for near infrared sensor-based sorting of hydrothermally-formed minerals, J. Infrared Spectrosc., 21(2013), No. 3, p. 223. doi: 10.1255/jnirs.1049
    H. Huang, W.H. Ye, T.Z. Xiong, P.L. Hu, and J.S. Huang, Zone division scrap non-ferrous metal recognition algorithm based on dual energy X-ray transmission, Mach. Build. Autom., 48(2019), No. 4, p. 26.
    O. Udoudo, Modelling the Efficiency of an Automated Sensor-based Sorter [Dissertation], University of Exeter, Exeter, 2010.
    N.G. Cutmore, Y. Liu, and A.G. Middleton, On-line ore characterisation and sorting, Miner. Eng., 11(1998), No. 9, p. 843. doi: 10.1016/S0892-6875(98)00071-5
    M. Gaft, R. Reisfeld, and G. Panczer, Minerals radiometric sorting and online process control, [in] Modern Luminescence Spectroscopy of Minerals and Materials, Springer, Cham, 2015, p. 499.
    T.F. Wang and J.X. Yang, Online intelligent sorting method of gold ore based on LIBS technology, [in] H. Haeri, ed., Materials in Environmental Engineering, De Gruyter, 2017, p. 753.
    R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, and V. Sturm, Laser-induced breakdown spectrometry—Applications for production control and quality assurance in the steel industry, Spectrochim. Acta B: At. Spectrosc., 56(2001), No. 6, p. 637. doi: 10.1016/S0584-8547(01)00214-2
    J.M. Vadillo, S. Palanco, M.D. Romero, and J.J. Laserna, Applications of laser-induced breakdown spectrometry (LIBS) in surface analysis, Fresenius J. Anal. Chem., 355(1996), No. 7-8, p. 909.
    M. Sabsabi and P. Cielo, Quantitative analysis of aluminum alloys by laser-induced breakdown spectroscopy and plasma characterization, Appl. Spectrosc., 49(1995), No. 4, p. 499. doi: 10.1366/0003702953964408
    Q.M. Peng, M.Y. Yao, M.H. Liu, Z.J. Lei, Y. Xu, and T.B. Chen, Analysis of metal element Cr in fresh orange leaf using laser-induced breakdown spectroscopy, Acta Agric. Univ. Jiangxiensis, 34(2012), No. 2, p. 397.
    L.Z. Zahng, B.F. Ni, W.Z. Tian, et al., Status and development of prompt γ-ray neutron activation analysis, Atom. Energy Sci. Technol., 2005, No. 3, p. 282.
    T.A. Aarhaug, A. Ferber, O. Kjos, and H. Gaertner, Online monitoring of aluminium primary production gas composition by use of Fourier-transform infrared spectrometry, [in] Light Metals 2014, Springer, Cham, 2014, p. 647-652.
    Y. Qiu, B. Chen, and D.S. Jia, Development of application of infrared spectrometry, Environ. Sci. Surv., 27(2008), No. S1, p. 23.
    X.F. Zhang, W. Ni, J.Y. Wu, and L.P. Zhu, Hydration mechanism of a cementitious material prepared with Si−Mn slag, Int. J. Miner. Metall. Mater., 18(2011), No. 2, p. 234. doi: 10.1007/s12613-011-0428-7
    J. Moros, A. Gredilla, S. Fdez-Ortiz de Vallejuelo, A. de Diego, J.M. Madariaga, S. Garrigues, and M. de la Guardia, Partial least squares X-ray fluorescence determination of trace elements in sediments from the estuary of Nerbioi-Ibaizabal River, Talanta, 82(2010), No. 4, p. 1254. doi: 10.1016/j.talanta.2010.06.047
    L.Q. Luo, G.Z. Ma, A. Ji, C.L. Guo, X.C. Zhan, and G.L. Liang, Neural cluster structure with multiple component prediction based on back error propagation in X-ray fluorescence spectrometry, J. Anal. Sci., 14(1998), No. 3, p. 177.
    W.Y. Li, W.H. Ye, and T.Z. Xiong, Metal identification algorithm based on bp neural network for dual energy X-ray transmission, Nonferrous Met. Eng., 10(2020), No. 8, p. 124.
    L.Q. Luo, L. Gan, X.J. Wu, A. Ji, and G.L. Liang, Correction of nonlinear matrix effects by using an algorithm of combining neural networks with fundamental parameters, Chin. J. Anal. Lab., 20(2001), No. 1, p. 1.
    R.L. Man, X.N. Zhao, and A. Ji, Application of partial least-squares method in multicomponent analysis by portable radioisotope XRFS, Spectrosc. Spectr. Anal., 11(1991), No. 4, p. 50.
    L.Q. Luo, G.Z. Ma, and A. Ji, Study of partial least squares regression and fundamental parameters method in X-ray fluorescence analysis, Chin. J. Anal. Chem., 20(1992), No. 9, p. 1074.
    P. Urbański and E. Kowalska, Application of partial least-squares calibration methods in low-resolution EDXRS, X Ray Spectrom., 24(1995), No. 2, p. 70. doi: 10.1002/xrs.1300240209
    L. Wielopolski and R.P. Gardner, Development of the detector response function approach in the least-squares analysis of X-ray fluorescence spectra, Nucl. Instrum. Methods, 165(1979), No. 2, p. 297. doi: 10.1016/0029-554X(79)90285-4
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Share Article

    Article Metrics

    Article Views(431) PDF Downloads(46) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint