Jiaxin Li, Hao Yuan, Wenjie Zhang, Ruijie Zhu, and Zhengbo Jiao, Construction of BiVO4/BiOCl@C Z-scheme heterojunction for enhanced photoelectrochemical performance, Int. J. Miner. Metall. Mater., 29(2022), No. 11, pp. 1971-1980. https://doi.org/10.1007/s12613-022-2481-9
Cite this article as:
Jiaxin Li, Hao Yuan, Wenjie Zhang, Ruijie Zhu, and Zhengbo Jiao, Construction of BiVO4/BiOCl@C Z-scheme heterojunction for enhanced photoelectrochemical performance, Int. J. Miner. Metall. Mater., 29(2022), No. 11, pp. 1971-1980. https://doi.org/10.1007/s12613-022-2481-9
Research ArticleCover Article

Construction of BiVO4/BiOCl@C Z-scheme heterojunction for enhanced photoelectrochemical performance

+ Author Affiliations
  • Corresponding author:

    Zhengbo Jiao    E-mail: jiaozhb@qdu.edu.cn

  • Received: 30 December 2021Revised: 16 March 2022Accepted: 21 March 2022Available online: 23 March 2022
  • A Z-scheme heterostructure of Mo, W co-doped BiVO4 (Mo,W:BVO/BiOCl@C) was fabricated by a simple solid solution drying and calcination (SSDC) method. The heterostructure was characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), etc. Under visible light irradiation, Mo,W:BVO/BiOCl@C heterostructure exhibits excellent photoelectrochemical capability compared with other as-prepared samples. The photocurrent density and the incident photon-to-electron conversion efficiency (IPCE) are about 5.4 and 9.0 times higher than those of pure BiVO4, respectively. The enhancement of the photoelectrochemical performance can be attributed to the construct of Z-scheme system, which is deduced from the radical trapping experiments. The Mo,W:BVO/BiOCl@C Z-scheme heterojunction enhances the visible-light absorption and reduces the recombination rate of charge carriers. This work provides an effective strategy to construct Z-scheme photoelectrodes for the application of photoelectrochemical water splitting.
  • loading
  • 1971-Supplementary Informations.docx
  • [1]
    J.W. Fu, J.G. Yu, C.J. Jiang, and B. Cheng, G-C3N4-based heterostructured photocatalysts, Adv. Energy Mater., 8(2018), No. 3, art. No. 1701503. doi: 10.1002/aenm.201701503
    [2]
    J.W. Fu, B.C. Zhu, W. You, M. Jaroniec, and J.G. Yu, A flexible bio-inspired H2-production photocatalyst, Appl. Catal. B, 220(2018), p. 148. doi: 10.1016/j.apcatb.2017.08.034
    [3]
    L.R. Bao, S.H. Zhu, Y. Chen, et al., Anionic defects engineering of Co3O4 catalyst for toluene oxidation, Fuel, 314(2022), art. No. 122774. doi: 10.1016/j.fuel.2021.122774
    [4]
    Y. Wang, H. Suzuki, J.J. Xie, et al., Mimicking natural photosynthesis: Solar to renewable H2 fuel synthesis by Z-scheme water splitting systems, Chem. Rev., 118(2018), No. 10, p. 5201. doi: 10.1021/acs.chemrev.7b00286
    [5]
    A. Fujishima and K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238(1972), No. 5358, p. 37. doi: 10.1038/238037a0
    [6]
    X.F. Zeng, J.S. Wang, Y.N. Zhao, W.L. Zhang, and M.H. Wang, Construction of TiO2-pillared multilayer graphene nanocomposites as efficient photocatalysts for ciprofloxacin degradation, Int. J. Miner. Metall. Mater., 28(2021), No. 3, p. 503. doi: 10.1007/s12613-020-2193-y
    [7]
    H.H. Wang, W.X. Liu, J. Ma, et al., Design of (GO/TiO2)N one-dimensional photonic crystal photocatalysts with improved photocatalytic activity for tetracycline degradation, Int. J. Miner. Metall. Mater., 27(2020), No. 6, p. 830. doi: 10.1007/s12613-019-1923-5
    [8]
    M.I. Rahmah, R.S. Sabry, and W.J. Aziz, Preparation and photocatalytic property of Fe2O3/ZnO composites with superhydrophobicity, Int. J. Miner. Metall. Mater., 28(2021), No. 6, p. 1072. doi: 10.1007/s12613-020-2096-y
    [9]
    Y.Z. Liu, H.Y. Zhang, J. Ke, et al., 0D (MoS2)/2D (g-C3N4) heterojunctions in Z-scheme for enhanced photocatalytic and electrochemical hydrogen evolution, Appl. Catal. B, 228(2018), p. 64. doi: 10.1016/j.apcatb.2018.01.067
    [10]
    S. Kment, F. Riboni, S. Pausova, et al., Photoanodes based on TiO2 and α-Fe2O3 for solar water splitting - Superior role of 1D nanoarchitectures and of combined heterostructures, Chem. Soc. Rev., 46(2017), No. 12, p. 3716. doi: 10.1039/C6CS00015K
    [11]
    A.Z. Liao, Y. Zhou, L.X. Xiao, et al., Direct Z scheme-fashioned photoanode systems consisting of Fe2O3 nanorod arrays and underlying thin Sb2Se3 layers toward enhanced photoelectrochemical water splitting performance, Nanoscale, 11(2019), No. 1, p. 109. doi: 10.1039/C8NR08292H
    [12]
    C.C. Feng, Z.B. Jiao, S.P. Li, Y. Zhang, and Y.P. Bi, Facile fabrication of BiVO4 nanofilms with controlled pore size and their photoelectrochemical performances, Nanoscale, 7(2015), No. 48, p. 20374. doi: 10.1039/C5NR06584D
    [13]
    H.L. Tan, R. Amal, and Y.H. Ng, Alternative strategies in improving the photocatalytic and photoelectrochemical activities of visible light-driven BiVO4: A review, J. Mater. Chem. A, 5(2017), No. 32, p. 16498. doi: 10.1039/C7TA04441K
    [14]
    F.Q. Zhou, J.C. Fan, Q.J. Xu, and Y.L. Min, BiVO4 nanowires decorated with CdS nanoparticles as Z-scheme photocatalyst with enhanced H2 generation, Appl. Catal. B, 201(2017), p. 77. doi: 10.1016/j.apcatb.2016.08.027
    [15]
    Q.X. Jia, A. Iwase, and A. Kudo, BiVO4–Ru/SrTiO3: Rh composite Z-scheme photocatalyst for solar water splitting, Chem. Sci., 5(2014), No. 4, p. 1513. doi: 10.1039/c3sc52810c
    [16]
    J.L. Li, Q.M. Wang, Y.J. Zhang, Y.Q. Liu, X.H. Liu, and Z.B. Jiao, Homogeneously mixed heterostructures of BiVO4/MoS2/RGO with improved photoelectrochemical performances, Solid State Sci., 104(2020), art. No. 106200. doi: 10.1016/j.solidstatesciences.2020.106200
    [17]
    W. Zhao, Y. Feng, H.B. Huang, et al., A novel Z-scheme Ag3VO4/BiVO4 heterojunction photocatalyst: Study on the excellent photocatalytic performance and photocatalytic mechanism, Appl. Catal. B, 245(2019), p. 448. doi: 10.1016/j.apcatb.2019.01.001
    [18]
    S. Yoshino, K. Sato, Y. Yamaguchi, A. Iwase, and A. Kudo, Z-schematic CO2 reduction to CO through interparticle electron transfer between SrTiO3:Rh of a reducing photocatalyst and BiVO4 of a water oxidation photocatalyst under visible light, ACS Appl. Energy Mater., 3(2020), No. 10, p. 10001. doi: 10.1021/acsaem.0c01684
    [19]
    L.L. Gao, X.F. Long, S.Q. Wei, et al., Facile growth of AgVO3 nanoparticles on Mo-doped BiVO4 film for enhanced photoelectrochemical water oxidation, Chem. Eng. J., 378(2019), art. No. 122193. doi: 10.1016/j.cej.2019.122193
    [20]
    H.Y. Li, Y.J. Sun, B. Cai, et al., Hierarchically Z-scheme photocatalyst of Ag@AgCl decorated on BiVO4 (040) with enhancing photoelectrochemical and photocatalytic performance, Appl. Catal. B, 170-171(2015), p. 206. doi: 10.1016/j.apcatb.2015.01.043
    [21]
    L.W. Shan, G.L. Wang, J. Suriyaprakash, D. Li, L.Z. Liu, and L.M. Dong, Solar light driven pure water splitting of B-doped BiVO4 synthesized via a sol–gel method, J. Alloys Compd., 636(2015), p. 131. doi: 10.1016/j.jallcom.2015.02.113
    [22]
    X.M. Jia, Q.F. Han, H.Z. Liu, S.Z. Li, and H.P. Bi, A dual strategy to construct flowerlike S-scheme BiOBr/BiOAc1−xBrx heterojunction with enhanced visible-light photocatalytic activity, Chem. Eng. J., 399(2020), art. No. 125701. doi: 10.1016/j.cej.2020.125701
    [23]
    Y.Y. Zhou, H.P. Wang, X.C. Liu, et al., An efficient strategy for selective oxidation of ammonia nitrogen into N2 over BiOCl photocatalyst, Appl. Catal. B, 294(2021), art. No. 120265. doi: 10.1016/j.apcatb.2021.120265
    [24]
    M. Sun, Q. Yan, Y. Shao, et al., Facile fabrication of BiOI decorated NaNbO3 cubes: A p–n junction photocatalyst with improved visible-light activity, Appl. Surf. Sci., 416(2017), p. 288. doi: 10.1016/j.apsusc.2017.04.136
    [25]
    J.S. Cheng, L. Frezet, P. Bonnet, and C. Wang, Preparation and photocatalytic properties of a hierarchical BiOCl/BiOF composite photocatalyst, Catal. Lett., 148(2018), No. 5, p. 1281. doi: 10.1007/s10562-018-2296-5
    [26]
    Q.Z. Wang, J. Hui, Y.J. Huang, et al., The preparation of BiOCl photocatalyst and its performance of photodegradation on dyes, Mater. Sci. Semicond. Process., 17(2014), p. 87. doi: 10.1016/j.mssp.2013.08.018
    [27]
    W.T. Lin, X. Yu, Y.H. Shen, et al., Carbon dots/BiOCl films with enhanced visible light photocatalytic performance, J. Nanopart. Res., 19(2017), No. 2, art. No. 56. doi: 10.1007/s11051-017-3764-3
    [28]
    N. Li, B.H. Qin, H.F. Kang, N.N. Cai, S.P. Huang, and Q. Xiao, Engineering hollow carbon spheres: Directly from solid resin spheres to porous hollow carbon spheres via air induced linker cleaving, Nanoscale, 13(2021), No. 32, p. 13873. doi: 10.1039/D1NR03392A
    [29]
    A.B. Chen, Y.Q. Li, Y.F. Yu, et al., Nitrogen-doped hollow carbon spheres for supercapacitors application, J. Alloys Compd., 688(2016), p. 878. doi: 10.1016/j.jallcom.2016.07.163
    [30]
    A. Celzard, A. Pasc, S. Schaefer, et al., Floating hollow carbon spheres for improved solar evaporation, Carbon, 146(2019), p. 232. doi: 10.1016/j.carbon.2019.01.101
    [31]
    S.J. Li, A. Pasc, V. Fierro, and A. Celzard, Hollow carbon spheres, synthesis and applications - A review, J. Mater. Chem. A, 4(2016), No. 33, p. 12686. doi: 10.1039/C6TA03802F
    [32]
    X.F. Li, M.F. Chi, S.M. Mahurin, et al., Graphitized hollow carbon spheres and yolk-structured carbon spheres fabricated by metal-catalyst-free chemical vapor deposition, Carbon, 101(2016), p. 57. doi: 10.1016/j.carbon.2016.01.043
    [33]
    P.M. Gangatharan, M.S. Maubane-Nkadimeng, and N.J. Coville, Building carbon structures inside hollow carbon spheres, Sci. Rep., 9(2019), art. No. 10642. doi: 10.1038/s41598-019-46992-1
    [34]
    A.B. Chen, Y.Y. Wang, Y.F. Yu, et al., Nitrogen-doped hollow carbon spheres for supercapacitors, J. Mater. Sci., 52(2017), No. 6, p. 3153. doi: 10.1007/s10853-016-0604-2
    [35]
    B.K. Mutuma, R. Rodrigues, K. Ranganathan, et al., Hollow carbon spheres and a hollow carbon sphere/polyvinylpyrrolidone composite as ammonia sensors, J. Mater. Chem. A, 5(2017), No. 6, p. 2539. doi: 10.1039/C6TA09424D
    [36]
    H.M. Shao, X.Y. Shen, X.T. Li, et al., Growth mechanism and photocatalytic evaluation of flower-like ZnO micro-structures prepared with SDBS assistance, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 729. doi: 10.1007/s12613-020-2138-5
    [37]
    Z.B. Jiao, X.G. Guan, M. Wang, et al., Undamaged depositing large-area ZnO quantum dots/RGO films on photoelectrodes for the construction of pure Z-scheme, Chem. Eng. J., 356(2019), p. 781. doi: 10.1016/j.cej.2018.09.102
    [38]
    J.L. Li, B.J. Jin, and Z.B. Jiao, Rationally embedded zinc oxide nanospheres serving as electron transport channels in bismuth vanadate/zinc oxide heterostructures for improved photoelectrochemical efficiency, J. Colloid Interface Sci., 592(2021), p. 127. doi: 10.1016/j.jcis.2021.02.025
    [39]
    L.W. Shan, J.C. Li, Z. Wu, et al., Unveiling the intrinsic band alignment and robust water oxidation features of hierarchical BiVO4 phase junction, Chem. Eng. J., 436(2022), art. No. 131516. doi: 10.1016/j.cej.2021.131516
    [40]
    J.L. Li, J.X. Li, H. Yuan, W.J. Zhang, Z.B. Jiao, and S.Z. Xiu, Modification of BiVO4 with partially covered α-Fe2O3 spindles serving as hole-transport channels for significantly improved photoelectrochemical performance, Chem. Eng. J., 398(2020), art. No. 125662. doi: 10.1016/j.cej.2020.125662
    [41]
    X.Q. Wu, J. Zhao, L.P. Wang, et al., Carbon dots as solid-state electron mediator for BiVO4/CDs/CdS Z-scheme photocatalyst working under visible light, Appl. Catal. B, 206(2017), p. 501. doi: 10.1016/j.apcatb.2017.01.049
    [42]
    Q.M. Wang, Y.J. Zhang, J.L. Li, N. Liu, Y.F. Jiao, and Z.B. Jiao, Construction of electron transport channels in type-I heterostructures of Bi2MoO6/BiVO4/g-C3N4 for improved charge carriers separation efficiency, J. Colloid Interface Sci., 567(2020), p. 145. doi: 10.1016/j.jcis.2020.02.003
    [43]
    Z. Song, X.L. Dong, N. Wang, et al., Efficient photocatalytic defluorination of perfluorooctanoic acid over BiOCl nanosheets via a hole direct oxidation mechanism, Chem. Eng. J., 317(2017), p. 925. doi: 10.1016/j.cej.2017.02.126
    [44]
    J.J. Guo, W. Zhao, D.Z. Xiong, Y. Ye, S.B. Li, and B. Zhang, A hydrolysis synthesis route for (001)/(102) coexposed BiOCl nanosheets with high visible light-driven catalytic performance, New J. Chem., 45(2021), No. 42, p. 19996. doi: 10.1039/D1NJ03961J
    [45]
    S. Asadzadeh-Khaneghah, A. Habibi-Yangjeh, and K. Yubuta, Novel g-C3N4 nanosheets/CDs/BiOCl photocatalysts with exceptional activity under visible light, J. Am. Ceram. Soc., 102(2019), No. 3, p. 1435. doi: 10.1111/jace.15959
    [46]
    Y.H. Gao, W. Yang, X.Y. Shan, and Y. Chen, Synthesis of “walnut-like” BiOCl/Br solid solution photocatalyst by electrostatic self-assembly method, Int. J. Energy Res., 44(2020), No. 3, p. 2226. doi: 10.1002/er.5084
    [47]
    J. Du, A.B. Chen, X.Q. Gao, Y. Zhang, and H.J. Lv, Reasonable construction of hollow carbon spheres with an adjustable shell surface for supercapacitors, ACS Appl. Mater. Interfaces, 14(2022), No. 9, p. 11750. doi: 10.1021/acsami.1c21009
    [48]
    Y. Wang, G.Q. Tan, T. Liu, et al., Photocatalytic properties of the g-C3N4/{010} facets BiVO4 interface Z-Scheme photocatalysts induced by BiVO4 surface heterojunction, Appl. Catal. B, 234(2018), p. 37. doi: 10.1016/j.apcatb.2018.04.026
    [49]
    S.H. Liang, T.T. Zhang, D.F. Zhang, et al., One-pot combustion synthesis and efficient broad spectrum photoactivity of Bi/BiOBr:Yb,Er/C photocatalyst, J. Am. Ceram. Soc., 101(2018), No. 8, p. 3424. doi: 10.1111/jace.15520
    [50]
    P.F. Zhang, H.O. Liang, H. Liu, J. Bai, and C.P. Li, A novel Z-scheme BiOI/BiOCl nanofibers photocatalyst prepared by one-pot solvothermal with efficient visible-light-driven photocatalytic activity, Mater. Chem. Phys., 272(2021), art. No. 125031. doi: 10.1016/j.matchemphys.2021.125031
    [51]
    Y.T. Xu, H.P. Fu, L. Zhao, L.S. Jian, Q.S. Liang, and X.F. Xiao, Insight into facet-dependent photocatalytic H2O2 production on BiOCl nanosheets, New J. Chem., 45(2021), No. 6, p. 3335. doi: 10.1039/D0NJ05506A
    [52]
    X.D. Tang, C.S. Ma, N. Liu, C.L. Liu, and S.L. Liu, Visible light β-Bi2O3/BiOCl heterojunction photocatalyst with highly enhanced photocatalytic activity, Chem. Phys. Lett., 709(2018), p. 82. doi: 10.1016/j.cplett.2018.08.045
    [53]
    J. Shang, T.Z. Chen, X.W. Wang, L.Y. Sun, and Q.Q. Su, Facile fabrication and enhanced photocatalytic performance: From BiOCl to element-doped BiOCl, Chem. Phys. Lett., 706(2018), p. 483. doi: 10.1016/j.cplett.2018.06.054
    [54]
    Z. Lu, L. Zeng, W.L. Song, Z.Y. Qin, D.W. Zeng, and C.S. Xie, In situ synthesis of C-TiO2/g-C3N4 heterojunction nanocomposite as highly visible light active photocatalyst originated from effective interfacial charge transfer, Appl. Catal. B, 202(2017), p. 489. doi: 10.1016/j.apcatb.2016.09.052
    [55]
    P.M. Rao, L.L. Cai, C. Liu, et al., Simultaneously efficient light absorption and charge separation in WO3/BiVO4 core/shell nanowire photoanode for photoelectrochemical water oxidation, Nano Lett., 14(2014), No. 2, p. 1099. doi: 10.1021/nl500022z
    [56]
    X.H. Gao, H.B. Wu, L.X. Zheng, Y.J. Zhong, Y. Hu, and X.W. Lou, Formation of mesoporous heterostructured BiVO4/Bi2S3 Hollow discoids with enhanced photoactivity, Angew. Chem. Int. Ed., 53(2014), No. 23, p. 5917. doi: 10.1002/anie.201403611
    [57]
    B.J. Jin, Y. Cho, Y. Zhang, et al., A “surface patching” strategy to achieve highly efficient solar water oxidation beyond surface passivation effect, Nano Energy, 66(2019), art. No. 104110. doi: 10.1016/j.nanoen.2019.104110
    [58]
    X. Jia, M. Tahir, L. Pan, et al., Direct Z-scheme composite of CdS and oxygen-defected CdWO4: An efficient visible-light-driven photocatalyst for hydrogen evolution, Appl. Catal. B, 198(2016), p. 154. doi: 10.1016/j.apcatb.2016.05.046
    [59]
    T.Y. Wang, W. Quan, D.L. Jiang, et al., Synthesis of redox-mediator-free direct Z-scheme AgI/WO3 nanocomposite photocatalysts for the degradation of tetracycline with enhanced photocatalytic activity, Chem. Eng. J., 300(2016), p. 280. doi: 10.1016/j.cej.2016.04.128
    [60]
    W.H. Liu, D.D. Liu, K. Wang, X.D. Yang, S.Q. Hu, and L.S. Hu, Fabrication of Z-scheme Ag3PO4/TiO2 heterostructures for enhancing visible photocatalytic activity, Nanoscale Res. Lett., 14(2019), No. 1, art. No. 203. doi: 10.1186/s11671-019-3041-8
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Share Article

    Article Metrics

    Article Views(1227) PDF Downloads(58) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return