Cite this article as: |
Na Li, Shuangquan Yang, Haosen Chen, Shuqiang Jiao, and Weili Song, Mechano-electrochemical perspectives on flexible lithium-ion batteries, Int. J. Miner. Metall. Mater., 29(2022), No. 5, pp. 1019-1036. https://doi.org/10.1007/s12613-022-2486-4 |
[1] |
C. Li, M.M. Islam, J. Moore, J. Sleppy, C. Morrison, K. Konstantinov, S.X. Dou, C. Renduchintala, and J. Thomas, Wearable energy-smart ribbons for synchronous energy harvest and storage, Nat. Commun., 7(2016), art. No. 13319. doi: 10.1038/ncomms13319
|
[2] |
A.E. Ostfeld, A.M. Gaikwad, Y. Khan, and A.C. Arias, High-performance flexible energy storage and harvesting system for wearable electronics, Sci. Rep., 6(2016), art. No. 26122. doi: 10.1038/srep26122
|
[3] |
D. Chen and Q.B. Pei, Electronic muscles and skins: A review of soft sensors and actuators, Chem. Rev., 117(2017), No. 17, p. 11239. doi: 10.1021/acs.chemrev.7b00019
|
[4] |
H. Nishide and K. Oyaizu, Toward flexible batteries, Science, 319(2008), No. 5864, p. 737. doi: 10.1126/science.1151831
|
[5] |
Y.F. Zhao and J.C. Guo, Development of flexible Li-ion batteries for flexible electronics, InfoMat, 2(2020), No. 5, p. 866. doi: 10.1002/inf2.12117
|
[6] |
L.F. Wang, M.M. Geng, X.N. Ding, C. Fang, Y. Zhang, S.S. Shi, Y. Zheng, K. Yang, C. Zhan, and X.D. Wang, Research progress of the electrochemical impedance technique applied to the high-capacity lithium-ion battery, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 538. doi: 10.1007/s12613-020-2218-6
|
[7] |
M. Li, J. Lu, Z.W. Chen, and K. Amine, 30 years of lithium-ion batteries, Adv. Mater., 30(2018), No. 33, art. No. 1800561. doi: 10.1002/adma.201800561
|
[8] |
T. Tao, S.G. Lu, and Y. Chen, A review of advanced flexible lithium-ion batteries, Adv. Mater. Technol., 3(2018), No. 9, art. No. 1700375. doi: 10.1002/admt.201700375
|
[9] |
Z.H. Fang, J. Wang, H.C. Wu, Q.Q. Li, S.S. Fan, and J.P. Wang, Progress and challenges of flexible lithium ion batteries, J. Power Sources, 454(2020), art. No. 227932. doi: 10.1016/j.jpowsour.2020.227932
|
[10] |
E. Foreman, W. Zakri, M.H. Sanatimoghaddam, A. Modjtahedi, S. Pathak, A.G. Kashkooli, N.G. Garafolo, and S. Farhad, A review of inactive materials and components of flexible lithium-ion batteries, Adv. Sustainable Syst., 1(2017), No. 11, art. No. 1700061. doi: 10.1002/adsu.201700061
|
[11] |
G.M. Zhou, F. Li, and H.M. Cheng, Progress in flexible lithium batteries and future prospects, Energy Environ. Sci., 7(2014), No. 4, p. 1307. doi: 10.1039/C3EE43182G
|
[12] |
Y.H. Hu and X.L. Sun, Flexible rechargeable lithium ion batteries: Advances and challenges in materials and process technologies, J. Mater. Chem. A, 2(2014), No. 28, p. 10712. doi: 10.1039/C4TA00716F
|
[13] |
J. Chang, Q.Y. Huang, Y. Gao, and Z.J. Zheng, Pathways of developing high-energy-density flexible lithium batteries, Adv. Mater., 33(2021), No. 46, art. No. 2170363. doi: 10.1002/adma.202170363
|
[14] |
C.Y. Wang and G.G. Wallace, Flexible electrodes and electrolytes for energy storage, Electrochim. Acta, 175(2015), p. 87. doi: 10.1016/j.electacta.2015.04.067
|
[15] |
Y. Li, R.H. Wang, Z.N. Guo, Z. Xiao, H.D. Wang, X.L. Luo, and H. Zhang, Emerging two-dimensional noncarbon nanomaterials for flexible lithium-ion batteries: Opportunities and challenges, J. Mater. Chem. A, 7(2019), No. 44, p. 25227. doi: 10.1039/C9TA09377J
|
[16] |
B. Liu, J.G. Zhang, and G.Z. Shen, Pursuing two-dimensional nanomaterials for flexible lithium-ion batteries, Nano Today, 11(2016), No. 1, p. 82. doi: 10.1016/j.nantod.2016.02.003
|
[17] |
O. Nyamaa, D.H. Seo, J.S. Lee, H.M. Jeong, S.C. Huh, J.H. Yang, E. Dolgor, and J.P. Noh, High electrochemical performance silicon thin-film free-standing electrodes based on buckypaper for flexible lithium-ion batteries, Materials (Basel), 14(2021), No. 8, art. No. 2053.
|
[18] |
Z. Gao, N.N. Song, Y.Y. Zhang, and X.D. Li, Cotton-textile-enabled, flexible lithium-ion batteries with enhanced capacity and extended lifespan, Nano Lett., 15(2015), No. 12, p. 8194. doi: 10.1021/acs.nanolett.5b03698
|
[19] |
B. Liu, J. Zhang, X.F. Wang, G. Chen, D. Chen, C.W. Zhou, and G.Z. Shen, Hierarchical three-dimensional ZnCo2O4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries, Nano Lett., 12(2012), No. 6, p. 3005. doi: 10.1021/nl300794f
|
[20] |
J. Chen, L. Wen, R.P. Fang, D.W. Wang, H.M. Cheng, and F. Li, Stress release in high-capacity flexible lithium-ion batteries through nested wrinkle texturing of graphene, J. Energy Chem., 61(2021), p. 243. doi: 10.1016/j.jechem.2021.03.021
|
[21] |
K. Rana, J. Singh, J.T. Lee, J.H. Park, and J.H. Ahn, Highly conductive freestanding graphene films as anode current collectors for flexible lithium-ion batteries, ACS Appl. Mater. Interfaces, 6(2014), No. 14, p. 11158. doi: 10.1021/am500996c
|
[22] |
R.W. Mo, D. Rooney, K.N. Sun, and H.Y. Yang, 3D nitrogen-doped graphene foam with encapsulated germanium/nitrogen-doped graphene yolk-shell nanoarchitecture for high-performance flexible Li-ion battery, Nat. Commun., 8(2017), art. No. 13949. doi: 10.1038/ncomms13949
|
[23] |
X. Fang, C.F. Shen, M.Y. Ge, J.P. Rong, Y.H. Liu, A.Y. Zhang, F. Wei, and C.W. Zhou, High-power lithium ion batteries based on flexible and light-weight cathode of LiNi0.5Mn1.5O4/carbon nanotube film, Nano Energy, 12(2015), p. 43. doi: 10.1016/j.nanoen.2014.11.052
|
[24] |
C.Z. Meng, C.H. Liu, and S.S. Fan, Flexible carbon nanotube/polyaniline paper-like films and their enhanced electrochemical properties, Electrochem. Commun., 11(2009), No. 1, p. 186. doi: 10.1016/j.elecom.2008.11.005
|
[25] |
X.L. Jia, C.Z. Yan, Z. Chen, R.R. Wang, Q. Zhang, L. Guo, F. Wei, and Y.F. Lu, Direct growth of flexible LiMn2O4/CNT lithium-ion cathodes, Chem. Commun., 47(2011), No. 34, p. 9669. doi: 10.1039/c1cc13536h
|
[26] |
K. Amin, Q.H. Meng, A. Ahmad, M. Cheng, M. Zhang, L.J. Mao, K. Lu, and Z.X. Wei, A carbonyl compound-based flexible cathode with superior rate performance and cyclic stability for flexible lithium-ion batteries, Adv. Mater., 30(2018), No. 4, art. No. 1703868. doi: 10.1002/adma.201703868
|
[27] |
J.Y. Wan, J. Xie, X. Kong, Z. Liu, K. Liu, F.F. Shi, A. Pei, H. Chen, W. Chen, J. Chen, X.K. Zhang, L.Q. Zong, J.Y. Wang, L.Q. Chen, J. Qin, and Y. Cui, Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries, Nat. Nanotechnol., 14(2019), No. 7, p. 705. doi: 10.1038/s41565-019-0465-3
|
[28] |
K.H. Choi, S.J. Cho, S.H. Kim, Y.H. Kwon, J.Y. Kim, and S.Y. Lee, Thin, deformable, and safety-reinforced plastic crystal polymer electrolytes for high-performance flexible lithium-ion batteries, Adv. Funct. Mater., 24(2014), No. 1, p. 44. doi: 10.1002/adfm.201301345
|
[29] |
W. Liu, J. Chen, Z. Chen, K. Liu, G.M. Zhou, Y.M. Sun, M.S. Song, Z.N. Bao, and Y. Cui, Stretchable lithium-ion batteries enabled by device-scaled wavy structure and elastic-sticky separator, Adv. Energy Mater., 7(2017), No. 21, art. No. 1701076. doi: 10.1002/aenm.201701076
|
[30] |
X.D. Wang, Y. Lu, D.S. Geng, L. Li, D. Zhou, H.Y. Ye, Y.C. Zhu, and R.M. Wang, Planar fully stretchable lithium-ion batteries based on a lamellar conductive elastomer, ACS Appl. Mater. Interfaces, 12(2020), No. 48, p. 53774. doi: 10.1021/acsami.0c15305
|
[31] |
S.H. Kim, K.H. Choi, S.J. Cho, E.H. Kil, and S.Y. Lee, Mechanically compliant and lithium dendrite growth-suppressing composite polymer electrolytes for flexible lithium-ion batteries, J. Mater. Chem. A, 1(2013), No. 16, p. 4949. doi: 10.1039/c3ta10612h
|
[32] |
C. Wang, R.J. Li, P. Chen, Y.S. Fu, X.Y. Ma, T. Shen, B.J. Zhou, K. Chen, J.J. Fu, X.F. Bao, W.W. Yan, and Y. Yang, Highly stretchable, non-flammable and notch-insensitive intrinsic self-healing solid-state polymer electrolyte for stable and safe flexible lithium batteries, J. Mater. Chem. A, 9(2021), No. 8, p. 4758. doi: 10.1039/D0TA10745J
|
[33] |
H. Yim, S.H. Yu, S.H. Baek, Y.E. Sung, and J.W. Choi, Directly integrated all-solid-state flexible lithium batteries on polymer substrate, J. Power Sources, 455(2020), art. No. 227978. doi: 10.1016/j.jpowsour.2020.227978
|
[34] |
J.Y. Rao, N.S. Liu, Z. Zhang, J. Su, L.Y. Li, L. Xiong, and Y.H. Gao, All-fiber-based quasi-solid-state lithium-ion battery towards wearable electronic devices with outstanding flexibility and self-healing ability, Nano Energy, 51(2018), p. 425. doi: 10.1016/j.nanoen.2018.06.067
|
[35] |
G.Y. Qian, X.B. Liao, Y.X. Zhu, F. Pan, X. Chen, and Y. Yang, Designing flexible lithium-ion batteries by structural engineering, ACS Energy Lett., 4(2019), No. 3, p. 690. doi: 10.1021/acsenergylett.8b02496
|
[36] |
M. Koo, K.I. Park, S.H. Lee, M. Suh, D.Y. Jeon, J.W. Choi, K. Kang, and K.J. Lee, Bendable inorganic thin-film battery for fully flexible electronic systems, Nano Lett., 12(2012), No. 9, p. 4810. doi: 10.1021/nl302254v
|
[37] |
Y.H. Kwon, S.W. Woo, H.R. Jung, H.K. Yu, K. Kim, B.H. Oh, S. Ahn, S.Y. Lee, S.W. Song, J. Cho, H.C. Shin, and J.Y. Kim, Cable-type flexible lithium ion battery based on hollow multi-helix electrodes, Adv. Mater., 24(2012), No. 38, p. 5192. doi: 10.1002/adma.201202196
|
[38] |
S.Y. Lee, K.H. Choi, W.S. Choi, Y.H. Kwon, H.R. Jung, H.C. Shin, and J.Y. Kim, Progress in flexible energy storage and conversion systems, with a focus on cable-type lithium-ion batteries, Energy Environ. Sci., 6(2013), No. 8, p. 2414. doi: 10.1039/c3ee24260a
|
[39] |
Y.N. Xu, K. Wang, J.W. Han, C. Liu, Y.B. An, Q.H. Meng, C. Li, X. Zhang, X.Z. Sun, Y.S. Zhang, L.J. Mao, Z.X. Wei, and Y.W. Ma, Scalable production of wearable solid-state Li-ion capacitors from N-doped hierarchical carbon, Adv. Mater., 32(2020), No. 45, art. No. 2005531. doi: 10.1002/adma.202005531
|
[40] |
Z.M. Song, X. Wang, C. Lv, Y.H. An, M.B. Liang, T. Ma, D. He, Y.J. Zheng, S.Q. Huang, H.Y. Yu, and H.Q. Jiang, Kirigami-based stretchable lithium-ion batteries, Sci. Rep., 5(2015), art. No. 10988. doi: 10.1038/srep10988
|
[41] |
Y.H. Bao, G.Q. Hong, Y. Chen, J. Chen, H.S. Chen, W.L. Song, and D.N. Fang, Customized kirigami electrodes for flexible and deformable lithium-ion batteries, ACS Appl. Mater. Interfaces, 12(2020), No. 1, p. 780. doi: 10.1021/acsami.9b18232
|
[42] |
M. Park, H. Cha, Y. Lee, J. Hong, S.Y. Kim, and J. Cho, Postpatterned electrodes for flexible node-type lithium-ion batteries, Adv. Mater., 29(2017), No. 11, art. No. 1605773. doi: 10.1002/adma.201605773
|
[43] |
F.W. Xiang, F. Cheng, Y.J. Sun, X.P. Yang, W. Lu, R. Amal, and L.M. Dai, Recent advances in flexible batteries: From materials to applications, Nano Res., 2021. DOI: 10.1007/s12274-021-3820-2.
|
[44] |
L.J. Mao, Q.H. Meng, A. Ahmad, and Z.X. Wei, Mechanical analyses and structural design requirements for flexible energy storage devices, Adv. Energy Mater., 7(2017), No. 23, art. No. 1700535. doi: 10.1002/aenm.201700535
|
[45] |
D. Chen, Z. Lou, K. Jiang, and G.Z. Shen, Device configurations and future prospects of flexible/stretchable lithium-ion batteries, Adv. Funct. Mater., 28(2018), No. 51, art. No. 1805596. doi: 10.1002/adfm.201805596
|
[46] |
H. Jeon, I. Cho, H. Jo, K. Kim, M.H. Ryou, and Y.M. Lee, Highly rough copper current collector: Improving adhesion property between a silicon electrode and current collector for flexible lithium-ion batteries, RSC Adv., 7(2017), No. 57, p. 35681. doi: 10.1039/C7RA04598K
|
[47] |
Z.A. Zhang, Q. Li, K. Zhang, W. Chen, Y.Q. Lai, and J. Li, Titanium-dioxide-grafted carbon paper with immobilized sulfur as a flexible free-standing cathode for superior lithium–sulfur batteries, J. Power Sources, 290(2015), p. 159. doi: 10.1016/j.jpowsour.2015.05.010
|
[48] |
S.W. Kim and K.Y. Cho, Current collectors for flexible lithium ion batteries: A review of materials, J. Electrochem. Sci. Technol, 6(2015), No. 1, p. 1. doi: 10.33961/JECST.2015.6.1.1
|
[49] |
Y.F. Zhang, F.Z. Li, K. Yang, X. Liu, Y.G. Chen, Z.Q. Lao, K.C. Mai, and Z.S. Zhang, Polymer molecular engineering enables rapid electron/ion transport in ultra-thick electrode for high-energy-density flexible lithium-ion battery, Adv. Funct. Mater., 31(2021), No. 19, art. No. 2100434. doi: 10.1002/adfm.202100434
|
[50] |
H.M. Shi, G.L. Wen, Y. Nie, G.H. Zhang, and H.G. Duan, Flexible 3D carbon cloth as a high-performing electrode for energy storage and conversion, Nanoscale, 12(2020), No. 9, p. 5261. doi: 10.1039/C9NR09785F
|
[51] |
L. Hu, H. Wu, F.L. Mantia, Y. Yang, and Y. Cui, Thin, flexible secondary Li-ion paper batteries, ACS Nano, 4(2010), No. 10, p. 5843. doi: 10.1021/nn1018158
|
[52] |
Y. Shi, L. Wen, G.M. Zhou, J. Chen, S.F. Pei, K. Huang, H.M. Cheng, and F. Li, Graphene-based integrated electrodes for flexible lithium ion batteries, 2D Mater., 2(2015), No. 2, art. No. 024004. doi: 10.1088/2053-1583/2/2/024004
|
[53] |
Y.H. Bao, Y. Liu, Y.D. Kuang, D.N. Fang, and T. Li, 3D-printed highly deformable electrodes for flexible lithium ion batteries, Energy Storage Mater., 33(2020), p. 55. doi: 10.1016/j.ensm.2020.07.010
|
[54] |
M.H. Park, M. Noh, S. Lee, M. Ko, S. Chae, S. Sim, S. Choi, H. Kim, H. Nam, S. Park, and J. Cho, Flexible high-energy Li-ion batteries with fast-charging capability, Nano Lett., 14(2014), No. 7, p. 4083. doi: 10.1021/nl501597s
|
[55] |
G.P. Fu, M.D. Soucek, and T. Kyu, Fully flexible lithium ion battery based on a flame retardant, solid-state polymer electrolyte membrane, Solid State Ionics, 320(2018), p. 310. doi: 10.1016/j.ssi.2018.03.021
|
[56] |
S. Xu, Y.H. Zhang, J. Cho, J. Lee, X. Huang, L. Jia, J.A. Fan, Y.W. Su, J. Su, H.G. Zhang, H.Y. Cheng, B.W. Lu, C.J. Yu, C. Chuang, T.I. Kim, T. Song, K. Shigeta, S. Kang, C. Dagdeviren, I. Petrov, P.V. Braun, Y.G. Huang, U. Paik, and J.A. Rogers, Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems, Nat. Commun., 4(2013), art. No. 1543. doi: 10.1038/ncomms2553
|
[57] |
H. An, J. Mike, K.A. Smith, L. Swank, Y.H. Lin, S.L. Pesek, R. Verduzco, and J.L. Lutkenhaus, Highly flexible self-assembled V2O5 cathodes enabled by conducting diblock copolymers, Sci. Rep., 5(2015), art. No. 14166. doi: 10.1038/srep14166
|
[58] |
D.H. Kim, J.H. Ahn, W.M. Choi, H.S. Kim, T.H. Kim, J.Z. Song, Y.Y. Huang, Z.J. Liu, C. Lu, and J.A. Rogers, Stretchable and foldable silicon integrated circuits, Science, 320(2008), No. 5875, p. 507. doi: 10.1126/science.1154367
|
[59] |
H.L. Luo, J.E. Zhu, E. Sahraei, and Y. Xia, Adhesion strength of the cathode in lithium-ion batteries under combined tension/shear loadings, RSC Adv., 8(2018), No. 8, p. 3996. doi: 10.1039/C7RA12382E
|
[60] |
A.J. Blake, R.R. Kohlmeyer, L.F. Drummy, J.S. Gutiérrez-Kolar, J. Carpena-Núñez, B. Maruyama, R. Shahbazian-Yassar, H. Huang, and M.F. Durstock, Creasable batteries: Understanding failure modes through dynamic electrochemical mechanical testing, ACS Appl. Mater. Interfaces, 8(2016), No. 8, p. 5196. doi: 10.1021/acsami.5b11175
|
[61] |
H. Cha, Y. Lee, J. Kim, M. Park, and J. Cho, Flexible 3D interlocking lithium-ion batteries, Adv. Energy Mater., 8(2018), No. 30, art. No. 1801917. doi: 10.1002/aenm.201801917
|
[62] |
J.Q. He, C.H. Lu, H.B. Jiang, F. Han, X. Shi, J.X. Wu, L.Y. Wang, T.Q. Chen, J.J. Wang, Y. Zhang, H. Yang, G.Q. Zhang, X.M. Sun, B.J. Wang, P.N. Chen, Y.G. Wang, Y.Y. Xia, and H.S. Peng, Scalable production of high-performing woven lithium-ion fibre batteries, Nature, 597(2021), No. 7874, p. 57. doi: 10.1038/s41586-021-03772-0
|
[63] |
C.M. Shi, T.Y. Wang, X.B. Liao, B.Y. Qie, P.F. Yang, M.J. Chen, X. Wang, A. Srinivasan, Q. Cheng, Q. Ye, A.C. Li, X. Chen, and Y. Yang, Accordion-like stretchable Li-ion batteries with high energy density, Energy Storage Mater., 17(2019), p. 136. doi: 10.1016/j.ensm.2018.11.019
|
[64] |
W. Weng, Q. Sun, Y. Zhang, S.S. He, Q.Q. Wu, J. Deng, X. Fang, G.Z. Guan, J. Ren, and H.S. Peng, A gum-like lithium-ion battery based on a novel arched structure, Adv. Mater., 27(2015), No. 8, p. 1363. doi: 10.1002/adma.201405127
|
[65] |
Z.M. Song, T. Ma, R. Tang, Q. Cheng, X. Wang, D. Krishnaraju, R. Panat, C.K. Chan, H.Y. Yu, and H.Q. Jiang, Origami lithium-ion batteries, Nat. Commun., 5(2014), art. No. 3140. doi: 10.1038/ncomms4140
|
[66] |
F.N. Mo, G.J. Liang, Z.D. Huang, H.F. Li, D.H. Wang, and C.Y. Zhi, An overview of fiber-shaped batteries with a focus on multifunctionality, scalability, and technical difficulties, Adv. Mater., 32(2020), No. 5, art. No. 1902151. doi: 10.1002/adma.201902151
|
[67] |
Y.S. Chen, K.H. Chang, C.C. Hu, and T.T. Cheng, Performance comparisons and resistance modeling for multi-segment electrode designs of power-oriented lithium-ion batteries, Electrochim. Acta, 55(2010), No. 22, p. 6433. doi: 10.1016/j.electacta.2010.06.041
|
[68] |
Y. Zhang, Y.H. Wang, L. Wang, C.M. Lo, Y. Zhao, Y.D. Jiao, G.F. Zheng, and H.S. Peng, A fiber-shaped aqueous lithium ion battery with high power density, J. Mater. Chem. A, 4(2016), No. 23, p. 9002. doi: 10.1039/C6TA03477B
|
[69] |
J. Ren, Y. Zhang, W.Y. Bai, X.L. Chen, Z.T. Zhang, X. Fang, W. Weng, Y.G. Wang, and H.S. Peng, Elastic and wearable wire-shaped lithium-ion battery with high electrochemical performance, Angew. Chem. Int. Ed., 53(2014), No. 30, p. 7864. doi: 10.1002/anie.201402388
|
[70] |
G.Y. Qian, B. Zhu, X.B. Liao, H.W. Zhai, A. Srinivasan, N.J. Fritz, Q. Cheng, M.Q. Ning, B.Y. Qie, Y. Li, S.L. Yuan, J. Zhu, X. Chen, and Y. Yang, Bioinspired, spine-like, flexible, rechargeable lithium-ion batteries with high energy density, Adv. Mater., 30(2018), No. 12, art. No. 1704947. doi: 10.1002/adma.201704947
|
[71] |
X.B. Liao, C.M. Shi, T.Y. Wang, B.Y. Qie, Y.L. Chen, P.F. Yang, Q. Cheng, H.W. Zhai, M.J. Chen, X. Wang, X. Chen, and Y. Yang, High-energy-density foldable battery enabled by zigzag-like design, Adv. Energy Mater., 9(2019), No. 4, art. No. 1802998. doi: 10.1002/aenm.201802998
|
[72] |
N. Li, H.S. Chen, S.Q. Yang, H. Yang, S.Q. Jiao, and W.L. Song, Bidirectional planar flexible snake-origami batteries, Adv. Sci., 8(2021), No. 20, art. No. 2101372. doi: 10.1002/advs.202101372
|
[73] |
C.J. Xu, L. Weng, L. Ji, and J.Q. Zhou, An analytical model for the fracture behavior of the flexible lithium-ion batteries under bending deformation, Eur. J. Mech. A/Solids, 73(2019), p. 47. doi: 10.1016/j.euromechsol.2018.06.012
|
[74] |
L.B. Jiang, J.J. Zhao, and Y.W. Gao, Mechanical analysis of a flexible cable battery using the finite element model, AIP Adv., 9(2019), No. 1, art. No. 015013. doi: 10.1063/1.5082195
|
[75] |
C.J. Xu, L. Weng, B.B. Chen, L. Ji, J.Q. Zhou, R. Cai, and S.L. Lu, Modeling of the ratcheting behavior in flexible electrodes during cyclic deformation, J. Power Sources, 446(2020), art. No. 227353. doi: 10.1016/j.jpowsour.2019.227353
|
[76] |
A. Chen, X. Guo, S. Yang, G.J. Liang, Q. Li, Z. Chen, Z.D. Huang, Q. Yang, C.P. Han, and C.Y. Zhi, Human joint-inspired structural design for a bendable/foldable/stretchable/twistable battery: Achieving multiple deformabilities, Energy Environ. Sci., 14(2021), No. 6, p. 3599. doi: 10.1039/D1EE00480H
|
[77] |
D.P. Qi, Z.Y. Liu, Y. Liu, W.R. Leow, B.W. Zhu, H. Yang, J.C. Yu, W. Wang, H. Wang, S.Y. Yin, and X.D. Chen, Suspended wavy graphene microribbons for highly stretchable microsupercapacitors, Adv. Mater., 27(2015), No. 37, p. 5559. doi: 10.1002/adma.201502549
|
[78] |
H.F. Li, Z.J. Tang, Z.X. Liu, and C.Y. Zhi, Evaluating flexibility and wearability of flexible energy storage devices, Joule, 3(2019), No. 3, p. 613. doi: 10.1016/j.joule.2019.01.013
|
[79] |
J.G. Tu, W.L. Song, H.P. Lei, Z.J. Yu, L.L. Chen, M.Y. Wang, and S.Q. Jiao, Nonaqueous rechargeable aluminum batteries: Progresses, challenges, and perspectives, Chem. Rev., 121(2021), No. 8, p. 4903. doi: 10.1021/acs.chemrev.0c01257
|