Xing Feng, Pengfei Yin, Limin Zhang, Xiyuan Sun, Jian Wang, Liang Zhao, Changfang Lu, Zhihua Gao, and Yongxin Zhan, Innovative preparation of Co@CuFe2O4 composite via ball-milling assisted chemical precipitation and annealing for glorious electromagnetic wave absorption, Int. J. Miner. Metall. Mater., 30(2023), No. 3, pp.559-569. https://dx.doi.org/10.1007/s12613-022-2488-2
Cite this article as: Xing Feng, Pengfei Yin, Limin Zhang, Xiyuan Sun, Jian Wang, Liang Zhao, Changfang Lu, Zhihua Gao, and Yongxin Zhan, Innovative preparation of Co@CuFe2O4 composite via ball-milling assisted chemical precipitation and annealing for glorious electromagnetic wave absorption, Int. J. Miner. Metall. Mater., 30(2023), No. 3, pp.559-569. https://dx.doi.org/10.1007/s12613-022-2488-2

Innovative preparation of Co@CuFe2O4 composite via ball-milling assisted chemical precipitation and annealing for glorious electromagnetic wave absorption

  • To deal with the growing electromagnetic hazards, herein a Co@CuFe2O4 absorbing agent with excellent impedance matching at thin thickness was obtained via an innovative route of ball-milling assisted chemical precipitation and annealing. The as-prepared composite possesses excellent interface polarization ability due to sufficient contact between CuFe2O4 NPs and flat Co, and this compressed Co lamella can also provide sufficient eddy current loss. Moreover, the dipole polarization, electron hopping/conduction, and structural scattering also contribute to the broadband microwave absorption of the composite. Thus, the minimum microwave reflection loss achieves −35.56 dB at 12.93 GHz for 1.8 mm thickness, and the broadest efficient absorption bandwidth can reach 6.74 GHz for a thinner thickness of 1.72 mm. The preparation method reported here can be referenced as a new-type route to manufacture electromagnetic absorbers with outstanding performance.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return