Cite this article as: |
Yi Liu, Jingnan Qin, Linlin Lu, Jie Xu, and Xiaolei Su, Enhanced microwave absorption property of silver decorated biomass ordered porous carbon composite materials with frequency selective surface incorporation, Int. J. Miner. Metall. Mater., 30(2023), No. 3, pp. 525-535. https://doi.org/10.1007/s12613-022-2491-7 |
Yi Liu E-mail: yiliu1021@163.com
Xiaolei Su E-mail: suxiaolei@xpu.edu.cn
[1] |
M.S. Cao, Y.Z. Cai, P. He, et al., 2D MXenes: Electromagnetic property for microwave absorption and electromagnetic interference shielding, Chem. Eng. J., 359(2019), p. 1265. doi: 10.1016/j.cej.2018.11.051
|
[2] |
L.F. Sun, Z.R. Jia, S. Xu, et al., Synthesis of NiCo2−0.5xCr2O3@C nanoparticles based on hydroxide with the heterogeneous interface for excellent electromagnetic wave absorption properties, Compos. Commun., 29(2022), art. No. 100993. doi: 10.1016/j.coco.2021.100993
|
[3] |
X. Cao, Z.R. Jia, D. Hu, and G.L. Wu, Synergistic construction of three-dimensional conductive network and double heterointerface polarization via magnetic FeNi for broadband microwave absorption, Adv. Compos. Hybrid Mater., 5(2022), p. 1030. doi: 10.1007/s42114-021-00415-w
|
[4] |
J.H. Tang, L. Ma, N. Tian, et al., Synthesis and electromagnetic properties of PANI/PVP/CIP core–shell composites, Mater. Sci. Eng. B, 186(2014), p. 26. doi: 10.1016/j.mseb.2014.02.003
|
[5] |
Y.Z. Long, M.M. Li, C.Z. Gu, et al., Recent advances in synthesis, physical properties and applications of conducting polymer nanotubes and nanofibers, Prog. Polym. Sci., 36(2011), No. 10, p. 1415. doi: 10.1016/j.progpolymsci.2011.04.001
|
[6] |
Z.Z. Shen, J.H. Chen, B. Li, et al., Recent progress in SiC nanowires as electromagnetic microwaves absorbing materials, J. Alloys Compd., 815(2020), art. No. 152388. doi: 10.1016/j.jallcom.2019.152388
|
[7] |
C.H. Sun, Z.R. Jia, S. Xu, et al., Synergistic regulation of dielectric-magnetic dual-loss and triple heterointerface polarization via magnetic MXene for high-performance electromagnetic wave absorption, J. Mater. Sci. Technol., 113(2022), p. 128. doi: 10.1016/j.jmst.2021.11.006
|
[8] |
T.Q. Hou, Z.R. Jia, Y.H. Dong, X.H. Liu, and G.L. Wu, Layered 3D structure derived from MXene/magnetic carbon nanotubes for ultra-broadband electromagnetic wave absorption, Chem. Eng. J., 431(2022), art. No. 133919. doi: 10.1016/j.cej.2021.133919
|
[9] |
Y. Liu, X.H. Liu, X.Y. E, et al., Synthesis of MnxOy@C hybrid composites for optimal electromagnetic wave absorption capacity and wideband absorption, J. Mater. Sci. Technol., 103(2022), p. 157. doi: 10.1016/j.jmst.2021.06.034
|
[10] |
H.Q. Zhao, Y. Cheng, W. Liu, et al., Biomass-derived porous carbon-based nanostructures for microwave absorption, Nano-Micro Lett., 11(2019), No. 1, art. No. 24. doi: 10.1007/s40820-019-0255-3
|
[11] |
X.M. Huang, X.H. Liu, Z.R. Jia, et al., Synthesis of 3D cerium oxide/porous carbon for enhanced electromagnetic wave absorption performance, Adv. Compos. Hybrid Mater., 4(2021), No. 4, p. 1398. doi: 10.1007/s42114-021-00304-2
|
[12] |
C.X. Wang, Z.R. Jia, S.Q. He, et al., Metal-organic framework-derived CoSn/NC nanocubes as absorbers for electromagnetic wave attenuation, J. Mater. Sci. Technol., 108(2022), p. 236. doi: 10.1016/j.jmst.2021.07.049
|
[13] |
Y. Cheng, H.Q. Zhao, Y. Zhao, et al., Structure-switchable mesoporous carbon hollow sphere framework toward sensitive microwave response, Carbon, 161(2020), p. 870. doi: 10.1016/j.carbon.2020.02.011
|
[14] |
D.Q. Zhang, T.T. Liu, J.Y. Cheng, et al., Light-weight and low-cost electromagnetic wave absorbers with high performances based on biomass-derived reduced graphene oxides, Nanotechnology, 30(2019), No. 44, art. No. 445708. doi: 10.1088/1361-6528/ab35fa
|
[15] |
X.Y. Zhang, Z.R. Jia, F. Zhang, et al., MOF-derived NiFe2S4/Porous carbon composites as electromagnetic wave absorber, J. Colloid Interface Sci., 610(2022), p. 610. doi: 10.1016/j.jcis.2021.11.110
|
[16] |
S.S. Gao, Q.D. An, Z.Y. Xiao, S.R. Zhai, and Z. Shi, Significant promotion of porous architecture and magnetic Fe3O4 NPs inside honeycomb-like carbonaceous composites for enhanced microwave absorption, RSC Adv., 8(2018), No. 34, p. 19011. doi: 10.1039/C8RA00913A
|
[17] |
J.B. Xi, E.Z. Zhou, Y.J. Liu, et al., Wood-based straightway channel structure for high performance microwave absorption, Carbon, 124(2017), p. 492. doi: 10.1016/j.carbon.2017.07.088
|
[18] |
Y.N. Gong, D.L. Li, C.Z. Luo, Q. Fu, and C.X. Pan, Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors, Green Chem., 19(2017), No. 17, p. 4132. doi: 10.1039/C7GC01681F
|
[19] |
J. Rong, F.X. Qiu, T. Zhang, et al., A facile strategy toward 3D hydrophobic composite resin network decorated with biological ellipsoidal structure rapeseed flower carbon for enhanced oils and organic solvents selective absorption, Chem. Eng. J., 322(2017), p. 397. doi: 10.1016/j.cej.2017.04.049
|
[20] |
W.M. Lv, F.S. Wen, J.Y. Xiang, et al., Peanut shell derived hard carbon as ultralong cycling anodes for lithium and sodium batteries, Electrochim. Acta, 176(2015), p. 533. doi: 10.1016/j.electacta.2015.07.059
|
[21] |
Y. Li, Q. Meng, J. Ma, et al., Bioinspired carbon/SnO2 composite anodes prepared from a photonic hierarchical structure for lithium batteries, ACS Appl. Mater. Interfaces, 7(2015), No. 21, p. 11146. doi: 10.1021/acsami.5b02774
|
[22] |
X. Zhang, L. Cai, Z. Xiang, and W. Lu, Hollow CuS microflowers anchored porous carbon composites as lightweight and broadband microwave absorber with flame-retardant and thermal stealth functions, Carbon, 184(2021), p. 514. doi: 10.1016/j.carbon.2021.08.026
|
[23] |
H.G. Wang, F.B. Meng, J.Y. Li, et al., Carbonized design of hierarchical porous carbon/Fe3O4@Fe derived from loofah sponge to achieve tunable high-performance microwave absorption, ACS Sustainable Chem. Eng., 6(2018), No. 9, p. 11801. doi: 10.1021/acssuschemeng.8b02089
|
[24] |
L.X. Wang, Y.K. Guan, X. Qiu, et al., Efficient ferrite/Co/porous carbon microwave absorbing material based on ferrite@metal-organic framework, Chem. Eng. J., 326(2017), p. 945. doi: 10.1016/j.cej.2017.06.006
|
[25] |
C. Ji, Y. Liu, J. Xu, et al., Enhanced microwave absorption properties of biomass-derived carbon decorated with transition metal alloy at improved graphitization degree, J. Alloys Compd., 890(2021), art. No. 161834. doi: 10.1016/j.jallcom.2021.161834
|
[26] |
H.M. Zhao, Z.B. Fu, H.B. Chen, M. Zhong, and C.Y. Wang, Excellent electromagnetic absorption capability of Ni/carbon based conductive and magnetic foams synthesized via a green one pot route, ACS Appl. Mater. Interfaces, 8(2016), No. 2, p. 1468. doi: 10.1021/acsami.5b10805
|
[27] |
J.Y. Fang, Y.S. Shang, Z. Chen, et al., Rice husk-based hierarchically porous carbon and magnetic particles composites for highly efficient electromagnetic wave attenuation, J. Mater. Chem. C, 5(2017), No. 19, p. 4695. doi: 10.1039/C7TC00987A
|
[28] |
Y. Cheng, H.Q. Zhao, Z.H. Yang, et al., An unusual route to grow carbon shell on Fe3O4 microspheres with enhanced microwave absorption, J. Alloys Compd., 762(2018), p. 463. doi: 10.1016/j.jallcom.2018.05.261
|
[29] |
L. Huang, J.J. Li, Z.J. Wang, et al., Microwave absorption enhancement of porous C@CoFe2O4 nanocomposites derived from eggshell membrane, Carbon, 143(2019), p. 507. doi: 10.1016/j.carbon.2018.11.042
|
[30] |
B. Wei, J.T. Zhou, Z.J. Yao, et al., The effect of Ag nanoparticles content on dielectric and microwave absorption properties of β-SiC, Ceram. Int., 46(2020), No. 5, p. 5788. doi: 10.1016/j.ceramint.2019.11.029
|
[31] |
B.H. Xia, X.H. Zhang, J. Jiang, et al., Facile preparation of high strength, lightweight and thermal insulation Polyetherimide/Ti3C2Tx MXenes/Ag nanoparticles composite foams for electromagnetic interference shielding, Compos. Commun., 29(2022), art. No. 101028. doi: 10.1016/j.coco.2021.101028
|
[32] |
Y. Liu, J. Yang, J. Xu, L.L. Lu, and X.L. Su, Electromagnetic and microwave absorption properties of Ti3SiC2/AgNWs/acrylic acid resin composite coatings with FSS incorporation, J. Alloys Compd., 899(2022), art. No. 163327. doi: 10.1016/j.jallcom.2021.163327
|
[33] |
M. Sevilla and A.B. Fuertes, Catalytic graphitization of templated mesoporous carbons, Carbon, 44(2006), No. 3, p. 468. doi: 10.1016/j.carbon.2005.08.019
|
[34] |
X. Qiu, L.X. Wang, H.L. Zhu, Y.K. Guan, and Q.T. Zhang, Lightweight and efficient microwave absorbing materials based on walnut shell-derived nano-porous carbon, Nanoscale, 9(2017), No. 22, p. 7408. doi: 10.1039/C7NR02628E
|
[35] |
P.B. Liu, C.Y. Zhu, S. Gao, et al., N-doped porous carbon nanoplates embedded with CoS2 vertically anchored on carbon cloths for flexible and ultrahigh microwave absorption, Carbon, 163(2020), p. 348. doi: 10.1016/j.carbon.2020.03.041
|
[36] |
X. Sun, J.P. He, G.X. Li, et al., Laminated magnetic graphene with enhanced electromagnetic wave absorption properties, J. Mater. Chem. C, 1(2013), No. 4, p. 765. doi: 10.1039/C2TC00159D
|
[37] |
W.J. Xing, P. Li, H. Wang, et al., The similar Cole–Cole semicircles and microwave absorption of Hexagonal Co/C composites, J. Alloys Compd., 750(2018), p. 917. doi: 10.1016/j.jallcom.2018.04.051
|
[38] |
Y.N. Shi, X.H. Gao, and J. Qiu, Synthesis and strengthened microwave absorption properties of three-dimensional porous Fe3O4/graphene composite foam, Ceram. Int., 45(2019), No. 3, p. 3126. doi: 10.1016/j.ceramint.2018.10.212
|
[39] |
Z. Lou, R. Li, P. Wang, et al., Phenolic foam-derived magnetic carbon foams (MCFs) with tunable electromagnetic wave absorption behavior, Chem. Eng. J., 391(2020), art. No. 123571. doi: 10.1016/j.cej.2019.123571
|
[40] |
Y. Wang, X. Gao, Y.Q. Fu, et al., Enhanced microwave absorption performances of polyaniline/graphene aerogel by covalent bonding, Compos. B Eng., 169(2019), p. 221. doi: 10.1016/j.compositesb.2019.04.008
|
[41] |
F. Wang, W.H. Gu, J.B. Chen, et al., The point defect and electronic structure of K doped LaCo0.9Fe0.1O3 perovskite with enhanced microwave absorbing ability, Nano Res., 15(2022), No. 4, p. 3720. doi: 10.1007/s12274-021-3955-1
|
[42] |
F. Wang, W.H. Gu, J.B. Chen, et al., Improved electromagnetic dissipation of Fe doping LaCoO3 toward broadband microwave absorption, J. Mater. Sci. Technol., 105(2022), p. 92. doi: 10.1016/j.jmst.2021.06.058
|
[43] |
T.T. Liu, M.Q. Cao, Y.S. Fang, Y.H. Zhu, and M.S. Cao, Green building materials lit up by electromagnetic absorption function: A review, J. Mater. Sci. Technol., 112(2022), p. 329. doi: 10.1016/j.jmst.2021.10.022
|
[44] |
X.X. Wang, M. Zhang, J.C. Shu, et al., Thermally-tailoring dielectric “genes” in graphene-based heterostructure to manipulate electromagnetic response, Carbon, 184(2021), p. 136. doi: 10.1016/j.carbon.2021.07.099
|
[45] |
Y. Liu, J.N. Qin, H.H. Shi, et al., Electromagnetic and microwave absorption properties of Ag wrapped MXene composite with frequency selective surface incorporation, Diam. Relat. Mater., 126(2022), art. No. 108996. doi: 10.1016/j.diamond.2022.108996
|
[46] |
J.B. Chen, J. Zheng, F. Wang, Q.Q. Huang, and G.B. Ji, Carbon fibers embedded with FeIII-MOF-5-derived composites for enhanced microwave absorption, Carbon, 174(2021), p. 509. doi: 10.1016/j.carbon.2020.12.077
|
[47] |
X.Q. Cui, X.H. Liang, J.B. Chen, et al., Customized unique core–shell Fe2N@N-doped carbon with tunable void space for microwave response, Carbon, 156(2020), p. 49. doi: 10.1016/j.carbon.2019.09.041
|
[48] |
L.L. Liang, W.H. Gu, Y. Wu, et al., Heterointerface engineering in electromagnetic absorbers: New insights and opportunities, Adv. Mater., 34(2022), No. 4, art. No. e2106195. doi: 10.1002/adma.202106195
|