Cite this article as: |
Jianlin Sun, Boyuan Huang, Jiaqi He, Erchao Meng, and Qianhao Chang, Achieving oxidation protection effect for strips hot rolling via Al2O3 nanofluid lubrication, Int. J. Miner. Metall. Mater., 30(2023), No. 5, pp. 908-916. https://doi.org/10.1007/s12613-022-2493-5 |
Jiaqi He E-mail: ustbhjq@163.com
[1] |
L. Wang, A.K. Tieu, H.T. Zhu, G.Y. Deng, S.G. Cui, and Q. Zhu, A study of water-based lubricant with a mixture of polyphosphate and nano-TiO2 as additives for hot rolling process, Wear, 477(2021), art. No. 203895. doi: 10.1016/j.wear.2021.203895
|
[2] |
A.I. Khdair and A. Ibrahim, Effect of graphene addition on the physicomechanical and tribological properties of Cu nanocomposites, Int. J. Miner. Metall. Mater., 29(2022), No. 1, p. 161. doi: 10.1007/s12613-020-2183-0
|
[3] |
X.L. Yu, Z.Y. Jiang, J.W. Zhao, et al., The role of oxide-scale microtexture on tribological behaviour in the nanoparticle lubrication of hot rolling, Tribol. Int., 93(2016), p. 190. doi: 10.1016/j.triboint.2015.08.049
|
[4] |
S. Xiong, D. Liang, H. Wu, W. Lin, J.S. Chen, and B.S. Zhang, Preparation, characterization, tribological and lubrication performances of Eu doped CaWO4 nanoparticle as anti-wear additive in water-soluble fluid for steel strip during hot rolling, Appl. Surf. Sci., 539(2021), art. No. 148090. doi: 10.1016/j.apsusc.2020.148090
|
[5] |
Y.Y. Bao, J.L. Sun, and L.H. Kong, Effects of nano-SiO2 as water-based lubricant additive on surface qualities of strips after hot rolling, Tribol. Int., 114(2017), p. 257. doi: 10.1016/j.triboint.2017.04.026
|
[6] |
Y.N. Wang, Z.P. Wan, L.S. Lu, Z.H. Zhang, and Y. Tang, Friction and wear mechanisms of castor oil with addition of hexagonal boron nitride nanoparticles, Tribol. Int., 124(2018), p. 10. doi: 10.1016/j.triboint.2018.03.035
|
[7] |
N.G. Demas, R.A. Erck, C. Lorenzo-Martin, O.O. Ajayi, and G.R. Fenske, Experimental evaluation of oxide nanoparticles as friction and wear improvement additives in motor oil, J. Nanomater., 2017(2017), art. No. 8425782. doi: 10.1155/2017/8425782
|
[8] |
L. Xu, T.B. Ma, Y.Z. Hu, and H. Wang, Molecular dynamics simulation of the interlayer sliding behavior in few-layer graphene, Carbon, 50(2012), No. 3, p. 1025. doi: 10.1016/j.carbon.2011.10.006
|
[9] |
K. Li, X. Zhang, C. Du, et al., Friction reduction and viscosity modification of cellulose nanocrystals as biolubricant additives in polyalphaolefin oil, Carbohydr. Polym., 220(2019), p. 228. doi: 10.1016/j.carbpol.2019.05.072
|
[10] |
S. Roy, Y. Jazaa, and S. Sundararajan, Investigating the micropitting and wear performance of copper oxide and tungsten carbide nanofluids under boundary lubrication, Wear, 428-429(2019), p. 55. doi: 10.1016/j.wear.2019.03.007
|
[11] |
C.L. Wang, J.L. Sun, C.L. Ge, and P. Wu, Enhanced lubrication performance of triethanolamine functionalized reduced graphene oxide on the cold-rolled surface of strips, Surf. Interface Anal., 53(2021), No. 9, p. 762. doi: 10.1002/sia.6977
|
[12] |
B. Jin, G.Y. Chen, J. Zhao, Y.Y. He, Y.Y. Huang, and J.B. Luo, Improvement of the lubrication properties of grease with Mn3O4/graphene (Mn3O4#G) nanocomposite additive, Friction, 9(2021), No. 6, p. 1361. doi: 10.1007/s40544-020-0412-1
|
[13] |
J.Q. He, J.L. Sun, Y.N. Meng, and Y. Pei, Superior lubrication performance of MoS2–Al2O3 composite nanofluid in strips hot rolling, J. Manuf. Process., 57(2020), p. 312. doi: 10.1016/j.jmapro.2020.06.037
|
[14] |
J.Q. He, J.L. Sun, Y.N. Meng, H.J. Tang, and P. Wu, Improved lubrication performance of MoS2–Al2O3 nanofluid through interfacial tribochemistry, Colloids Surf. A, 618(2021), art. No. 126428. doi: 10.1016/j.colsurfa.2021.126428
|
[15] |
P. Baghery, M. Farzam, A.B. Mousavi, and M. Hosseini, Ni–TiO2 nanocomposite coating with high resistance to corrosion and wear, Surf. Coat. Technol., 204(2010), No. 23, p. 3804. doi: 10.1016/j.surfcoat.2010.04.061
|
[16] |
A. Kumar and M.K. Meena, Fabrication of durable corrosion-resistant polyurethane/SiO2 nanoparticle composite coating on aluminium, Colloid Polym. Sci., 299(2021), No. 6, p. 915. doi: 10.1007/s00396-021-04814-9
|
[17] |
S. Dehgahi, R. Amini, and M. Alizadeh, Microstructure and corrosion resistance of Ni–Al2O3–SiC nanocomposite coatings produced by electrodeposition technique, J. Alloys Compd., 692(2017), p. 622. doi: 10.1016/j.jallcom.2016.08.244
|
[18] |
A.K. Behera, A. Das, S. Das, and A. Mallik, Electrochemically functionalized graphene as an anti-corrosion reinforcement in Cu matrix composite thin films, Int. J. Miner. Metall. Mater., 28(2021), No. 9, p. 1525. doi: 10.1007/s12613-020-2124-y
|
[19] |
I.K. Aliyu, M.K. A, and A.S. Mohammed, Wear and corrosion resistance performance of UHMWPE/GNPs nanocomposite coatings on AA2028 Al alloys, Prog. Org. Coat., 151(2021), art. No. 106072. doi: 10.1016/j.porgcoat.2020.106072
|
[20] |
Z.X. Yu, H.H. Di, Y. Ma, et al., Fabrication of graphene oxide-alumina hybrids to reinforce the anti-corrosion performance of composite epoxy coatings, Appl. Surf. Sci., 351(2015), p. 986. doi: 10.1016/j.apsusc.2015.06.026
|
[21] |
X.X. Ding, L. Wu, J. Chen, et al., A. Atrens, and F.S. Pan, Enhanced protective nanoparticle-modified MgAl-LDHs coatings on titanium alloy, Surf. Coat. Technol., 404(2020), art. No. 126449. doi: 10.1016/j.surfcoat.2020.126449
|
[22] |
Y.Y. Tian, H. Feng, J. Li, Q.H. Fang, and L.C. Zhang, Nanoscale sliding friction behavior on Cu/Ag bilayers influenced by water film, Appl. Surf. Sci., 545(2021), art. No. 148957. doi: 10.1016/j.apsusc.2021.148957
|
[23] |
L.P. Wu, L.M. Keer, J. Lu, B.Y. Song, and L. Gu, Molecular dynamics simulations of the rheological properties of graphene–PAO nanofluids, J. Mater. Sci., 53(2018), No. 23, p. 15969. doi: 10.1007/s10853-018-2756-8
|
[24] |
A.K. Rappe, C.J. Casewit, K.S. Colwell, W.A. Goddard III, and W.M. Skiff, UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations, J. Am. Chem. Soc., 114(1992), No. 25, p. 10024. doi: 10.1021/ja00051a040
|
[25] |
D.J. Evans and B.L. Holian, The Nose–Hoover thermostat, J. Chem. Phys., 83(1985), No. 8, p. 4069. doi: 10.1063/1.449071
|
[26] |
Y.L. Kang and J.L. Sun, Rolling Engineering, 2nd ed, Metallurgical Industry Press, Beijing, 2014.
|
[27] |
R.P. Matthews, R.D. Knusten, J.E. Westraadt, and T. Couvant, Intergranular oxidation of 316L stainless steel in the PWR primary water environment, Corros. Sci., 125(2017), p. 175. doi: 10.1016/j.corsci.2017.06.023
|
[28] |
W.Z. Xia, J.W. Zhao, H. Wu, S.H. Jiao, and Z.Y. Jiang, Effects of oil-in-water based nanolubricant containing TiO2 nanoparticles on the tribological behaviour of oxidised high-speed steel, Tribol. Int., 110(2017), p. 77. doi: 10.1016/j.triboint.2017.02.013
|
[29] |
L. Jia, Y.Y. Zeng, and T. Zhang, Experimental study on pore distribution characters and convert rate of CaO, J. Therm. Sci., 14(2005), No. 1, p. 87. doi: 10.1007/s11630-005-0045-8
|
[30] |
Z.N. Zhang, N. Kong, H.B. Li, and J. Zhang, The migration and reaction of ions during the oxidation of Fe–Si alloy with 0.5wt% Si at 1000–1200°C, Mater. Res. Express, 5(2018), No. 6, art. No. 066506. doi: 10.1088/2053-1591/aac67b
|
[31] |
N. Birks, G.H. Meier, and F.S. Pettit, Introduction to the High Temperature Oxidation of Metals, 2nd ed., Cambridge University Press, Cambridge, 2006.
|
[32] |
H.S. Grewal, R.M. Sanjiv, H.S. Arora, et al., Activation energy and high temperature oxidation behavior of multi-principal element alloy, Adv. Eng. Mater., 19(2017), No. 11, art. No. 1700182. doi: 10.1002/adem.201700182
|
[33] |
M.H. Du and H.P. Cheng, Transparent interface between classical molecular dynamics and first-principles molecular dynamics, Int. J. Quantum Chem., 93(2003), No. 1, p. 1. doi: 10.1002/qua.10480
|
[34] |
A.W. Marczewski, A. Deryło-Marczewska, and A. Słota, Adsorption and desorption kinetics of benzene derivatives on mesoporous carbons, Adsorption, 19(2013), No. 2-4, p. 391. doi: 10.1007/s10450-012-9462-7
|
[35] |
X.Q. Ma, Y.H. Liu, J.L. Chu, et al., Removal of zirconium from hydrous titanium dioxide, Int. J. Miner. Metall. Mater., 20(2013), No. 1, p. 1. doi: 10.1007/s12613-013-0686-7
|