Zichuan Zhao, Jue Tang, Mansheng Chu, Xindong Wang, Aijun Zheng, Xiaoai Wang, and Yang Li, Direct reduction swelling behavior of pellets in hydrogen-based shaft furnaces under typical atmospheres, Int. J. Miner. Metall. Mater., 29(2022), No. 10, pp.1891-1900. https://dx.doi.org/10.1007/s12613-022-2494-4
Cite this article as: Zichuan Zhao, Jue Tang, Mansheng Chu, Xindong Wang, Aijun Zheng, Xiaoai Wang, and Yang Li, Direct reduction swelling behavior of pellets in hydrogen-based shaft furnaces under typical atmospheres, Int. J. Miner. Metall. Mater., 29(2022), No. 10, pp.1891-1900. https://dx.doi.org/10.1007/s12613-022-2494-4

Direct reduction swelling behavior of pellets in hydrogen-based shaft furnaces under typical atmospheres

  • Hydrogen-based shaft furnace process is gaining more and more attention due to its low carbon emission, and the reduction behavior of iron bearing burdens significantly affects its operation. In this work, the effects of reduction degree, temperature, and atmosphere on the swelling behavior of pellet has been studied thoroughly under typical hydrogen metallurgy conditions. The results show that the pellets swelled rapidly in the early reduction stage, then reached a maximum reduction swelling index (RSI) at approximately 40% reduction degree. The crystalline transformation of the iron oxides during the reduction process was the main reason of pellets swelling. The RSI increased significantly with increasing temperature in the range of 850–1050°C, the maximum RSI increased from 6.66% to 25.0% in the gas composition of 100% H2. With the temperature increased, the pellets suffered more thermal stress resulting in an increase of the volume. The maximum RSI decreased from 19.78% to 17.35% with the volume proportion of H2 in the atmosphere increased from 55% to 100% at the temperature of 950°C. The metallic iron tended to precipitate in a lamellar structure rather than whiskers. Consequently, the inside of the pellets became regular, so the RSI decreased. Overall, controlling a reasonable temperature and increasing the H2 proportion is an effective way to decrease the RSI of pellets.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return