Mengchen Song, Runkai Xie, Liuting Zhang, Xuan Wang, Zhendong Yao, Tao Wei, and Danhong Shang, Combined “Gateway” and “Spillover” effects originated from a CeNi5 alloy catalyst for hydrogen storage of MgH2, Int. J. Miner. Metall. Mater., 30(2023), No. 5, pp. 970-976.
Cite this article as:
Mengchen Song, Runkai Xie, Liuting Zhang, Xuan Wang, Zhendong Yao, Tao Wei, and Danhong Shang, Combined “Gateway” and “Spillover” effects originated from a CeNi5 alloy catalyst for hydrogen storage of MgH2, Int. J. Miner. Metall. Mater., 30(2023), No. 5, pp. 970-976.
Research Article

Combined “Gateway” and “Spillover” effects originated from a CeNi5 alloy catalyst for hydrogen storage of MgH2

+ Author Affiliations
*These authors contributed equally to this paper.
  • Efficient catalysts enable MgH2 with superior hydrogen storage performance. Herein, we successfully synthesized a catalyst composed of Ce and Ni (i.e. CeNi5 alloy) with splendid catalytic action for boosting the hydrogen storage property of magnesium hydride (MgH2). The MgH2–5wt%CeNi5 composite’s initial hydrogen release temperature was reduced to 174°C and approximately 6.4wt% H2 was released at 275°C within 10 min. Besides, the dehydrogenation enthalpy of MgH2 was slightly decreased by adding CeNi5. For hydrogenation, the fully dehydrogenated sample absorbed 4.8wt% H2 at a low temperature of 175°C. The hydrogenation apparent activation energy was decreased from (73.60 ± 1.79) to (46.12 ± 7.33) kJ/mol. Microstructure analysis revealed that Mg2Ni/Mg2NiH4 and CeH2.73 were formed during the process of hydrogen absorption and desorption, exerted combined “Gateway” and “Spillover” effects to reduce the operating temperature and improve the hydrogen storage kinetics of MgH2. Our work provides an example of merging “Gateway” and “Spillover” effects in one catalyst and may shed light on designing novel highly-effective catalysts for MgH2 in near future.
  • loading
  • [1]
    T. He, P. Pachfule, H. Wu, Q. Xu, and P. Chen, Hydrogen carriers, Nat. Rev. Mater., 1(2016), No. 12, art. No. 16059. doi: 10.1038/natrevmats.2016.59
    Q.W. Lai, M. Paskevicius, D.A. Sheppard, et al., Hydrogen storage materials for mobile and stationary applications: Current state of the art, ChemSusChem, 8(2015), No. 17, p. 2789. doi: 10.1002/cssc.201500231
    S.Y. Lee, J.H. Lee, Y.H. Kim, J.W. Kim, K.J. Lee, and S.J.Park, Recent progress using solid-state materials for hydrogen storage: A short review, Processes, 10(2022), No. 2, art. No. 304. doi: 10.3390/pr10020304
    H.J. Lin, Y.S. Lu, L.T. Zhang, H.Z. Liu, K. Edalati, and Á. Révész, Recent advances in metastable alloys for hydrogen storage: A review, Rare Met., 41(2022), No. 6, p. 1797. doi: 10.1007/s12598-021-01917-8
    J.A. Bolarin, Z. Zhang, H. Cao, Z. Li, T. He, and P. Chen, Room temperature hydrogen absorption of Mg/MgH2 catalyzed by BaTiO3, J. Phys. Chem. C, 125(2021), No. 36, p. 19631. doi: 10.1021/acs.jpcc.1c05560
    I.P. Jain, Hydrogen the fuel for 21st century, Int. J. Hydrog. Energy, 34(2009), No. 17, p. 7368. doi: 10.1016/j.ijhydene.2009.05.093
    Q. Li, Y.F. Lu, Q. Luo, et al., Thermodynamics and kinetics of hydriding and dehydriding reactions in Mg-based hydrogen storage materials, J. Magnes. Alloys, 9(2021), No. 6, p. 1922. doi: 10.1016/j.jma.2021.10.002
    Y. Li, Y. Tao, and Q. Huo, Effect of stoichiometry and Cu-substitution on the phase structure and hydrogen storage properties of Ml–Mg–Ni-based alloys, Int. J. Miner. Metall. Mater., 22(2015), No. 1, p. 86. doi: 10.1007/s12613-015-1047-5
    J. Cermak, L. Kral, and P. Roupcova, Significantly decreased stability of MgH2 in the Mg–In–C alloy system: Long-period-stacking-ordering as a new way how to improve performance of hydrogen storage alloys? Renewable Energy, 150(2020), p. 204. doi: 10.1016/j.renene.2019.12.107
    H.G. Gao, S. Rui, J.L. Zhu, et al., Interface effect in sandwich like Ni/Ti3C2 catalysts on hydrogen storage performance of MgH2, Appl. Surf. Sci., 564(2021), art. No. 150302. doi: 10.1016/j.apsusc.2021.150302
    L. Ji, L.T. Zhang, X.L. Yang, X.Q. Zhu, and L.X. Chen, The remarkably improved hydrogen storage performance of MgH2 by the synergetic effect of an FeNi/rGO nanocomposite, Dalton Trans., 49(2020), No. 13, p. 4146. doi: 10.1039/D0DT00230E
    Y.S. Lu, H. Wang, J.W. Liu, L.Z. Ouyang, and M. Zhu, Destabilizing the dehydriding thermodynamics of MgH2 by reversible intermetallics formation in Mg–Ag–Zn ternary alloys, J. Power Sources, 396(2018), p. 796. doi: 10.1016/j.jpowsour.2018.06.060
    C. Peng, Y.T. Li, and Q.G. Zhang, Enhanced hydrogen desorption properties of MgH2 by highly dispersed Ni: The role of in situ hydrogenolysis of nickelocene in ball milling process, J. Alloys Compd., 900(2022), art. No. 163547. doi: 10.1016/j.jallcom.2021.163547
    C. Zhou, Y.Y. Peng, and Q.G. Zhang, Growth kinetics of MgH2 nanocrystallites prepared by ball milling, J. Mater. Sci. Technol., 50(2020), p. 178. doi: 10.1016/j.jmst.2020.01.063
    Q.Y. Zhang, Y.K. Huang, L. Xu, et al., Highly dispersed MgH2 nanoparticle-graphene nanosheet composites for hydrogen storage, ACS Appl. Nano Mater., 2(2019), No. 6, p. 3828. doi: 10.1021/acsanm.9b00694
    J.N. Chen, J. Zhang, J.H. He, et al., A comparative study on hydrogen storage properties of as-cast and extruded Mg–4.7Y–4.1Nd–0.5Zr alloys, J. Phys. Chem. Solids, 161(2022), art. No. 110483. doi: 10.1016/j.jpcs.2021.110483
    Y. Fu, Z. Ding, L. Zhang, et al., Catalytic effect of a novel MgC0.5Co3 compound on the dehydrogenation of MgH2, Prog. Nat. Sci. Mater. Int., 31(2021), No. 2, p. 264. doi: 10.1016/j.pnsc.2021.01.009
    X. Lu, L.T. Zhang, J.G. Zheng, and X.B. Yu, Construction of carbon covered Mg2NiH4 nanocrystalline for hydrogen storage, J. Alloys Compd., 905(2022), art. No. 164169. doi: 10.1016/j.jallcom.2022.164169
    T.H. Huang, X. Huang, C.Z. Hu, et al., MOF-derived Ni nanoparticles dispersed on monolayer MXene as catalyst for improved hydrogen storage kinetics of MgH2, Chem. Eng. J., 421(2021), art. No. 127851. doi: 10.1016/j.cej.2020.127851
    S. Ren, Y. Fu, L. Zhang, et al., An improved hydrogen storage performance of MgH2 enabled by core–shell structure Ni/Fe3O4@MIL, J. Alloys Compd., 892(2022), art. No. 162048. doi: 10.1016/j.jallcom.2021.162048
    Y. Chen, H.Y. Zhang, F.Y. Wu, et al., Mn nanoparticles enhanced dehydrogenation and hydrogenation kinetics of MgH2 for hydrogen storage, Trans. Nonferrous Met. Soc. China, 31(2021), No. 11, p. 3469. doi: 10.1016/S1003-6326(21)65743-6
    Z. Liang, Z. Yao, X. Xiao, et al., Positive impacts of tuning lattice on cyclic performance in ZrCo-based hydrogen isotope storage alloys, Mater. Today Energy, 20(2021), art. No. 100645. doi: 10.1016/j.mtener.2021.100645
    W. Chen, S.L. Ju, Y.H. Sun, et al., Thermodynamically favored stable hydrogen storage reversibility of NaBH4 inside of bimetallic nanoporous carbon nanosheets, J. Mater. Chem. A, 10(2022), No. 13, p. 7122. doi: 10.1039/D1TA10361J
    T. Huang, X. Huang, C. Hu, et al., Enhancing hydrogen storage properties of MgH2 through addition of Ni/CoMoO4 nanorods, Mater. Today Energy, 19(2021), art. No. 100613. doi: 10.1016/j.mtener.2020.100613
    G. Liang, J. Huot, S. Boily, A. van Neste, and R.Schulz, Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2–Tm (Tm = Ti, V, Mn, Fe and Ni) systems, J. Alloys Compd., 292(1999), No. 1-2, p. 247. doi: 10.1016/S0925-8388(99)00442-9
    L. Xie, Y. Liu, X.Z. Zhang, J.L. Qu, Y.T. Wang, and X.G. Li, Catalytic effect of Ni nanoparticles on the desorption kinetics of MgH2 nanoparticles, J. Alloys Compd., 482(2009), No. 1-2, p. 388. doi: 10.1016/j.jallcom.2009.04.028
    B. Zhang, Y.J. Lv, J.G. Yuan, and Y. Wu, Effects of microstructure on the hydrogen storage properties of the melt-spun Mg–5Ni–3La (at.%) alloys, J. Alloys Compd., 702(2017), p. 126. doi: 10.1016/j.jallcom.2017.01.221
    H.W. Zhang, X.Y. Zheng, X. Tian, Y. Liu, and X.G. Li, New approaches for rare earth–magnesium based hydrogen storage alloys, Prog. Nat. Sci. Mater. Int., 27(2017), No. 1, p. 50. doi: 10.1016/j.pnsc.2016.12.011
    Z.M. Yuan, T. Yang, W.G. Bu, H.W. Shang, Y. Qi, and Y.H. Zhang, Structure, hydrogen storage kinetics and thermodynamics of Mg-base Sm5Mg41 alloy, Int. J. Hydrogen Energy, 41(2016), No. 14, p. 5994. doi: 10.1016/j.ijhydene.2016.02.108
    Y.H. Zhang, L.W. Li, D.C. Feng, P.F. Gong, H.W. Shang, and S.H. Guo, Hydrogen storage behavior of nanocrystalline and amorphous La–Mg–Ni-based LaMg 12-type alloys synthesized by mechanical milling, Trans. Nonferrous Met. Soc. China, 27(2017), No. 3, p. 551. doi: 10.1016/S1003-6326(17)60061-X
    X. Zhao, S.M. Han, Y. Li, X.C. Chen, and D.D. Ke, Effect of CeH2.29 on the microstructures and hydrogen properties of LiBH4–Mg2NiH4 composites, Int. J. Miner. Metall. Mater., 22(2015), No. 4, p. 423. doi: 10.1007/s12613-015-1089-8
    H.J. Lin, J.J. Tang, Q. Yu, et al., Symbiotic CeH2.73/CeO2 catalyst: A novel hydrogen pump, Nano Energy, 9(2014), p. 80. doi: 10.1016/j.nanoen.2014.06.026
    L.T. Zhang, Z.L. Cai, Z.D. Yao, et al., A striking catalytic effect of facile synthesized ZrMn2 nanoparticles on the de/rehydrogenation properties of MgH2, J. Mater. Chem. A, 7(2019), No. 10, p. 5626. doi: 10.1039/C9TA00120D
    Y. Ye, Y. Yue, J.F. Lu, J. Ding, W. Wang, and J. Yan, Enhanced hydrogen storage of a LaNi5 based reactor by using phase change materials, Renewable Energy, 180(2021), p. 734. doi: 10.1016/j.renene.2021.08.118
    E. Grigorova, P. Tzvetkov, S. Todorova, P. Markov, and T. Spassov, Facilitated synthesis of Mg2Ni based composites with attractive hydrogen sorption properties, Materials, 14(2021), No. 8, art. No. 1936. doi: 10.3390/ma14081936
    J. Zhang, L. He, Y. Yao, et al., Catalytic effect and mechanism of NiCu solid solutions on hydrogen storage properties of MgH2, Renewable Energy, 154(2020), p. 1229. doi: 10.1016/j.renene.2020.03.089
    S.N. Klyamkin and N.S.Zakharkina, Hysteresis and related irreversible phenomena in CeNi5-based intermetallic hydrides, J. Alloys Compd., 361(2003), No. 1-2, p. 200. doi: 10.1016/S0925-8388(03)00438-9
    X. Lu, L.T. Zhang, H.J. Yu, et al., Achieving superior hydrogen storage properties of MgH2 by the effect of TiFe and carbon nanotubes, Chem. Eng. J., 422(2021), No. 17, art. No. 130101. doi: 10.1016/j.cej.2021.130101
    N.H. Vasoya, L.H. Vanpariya, P.N. Sakariya, et al., Synthesis of nanostructured material by mechanical milling and study on structural property modifications in Ni0.5Zn0.5Fe2O4, Ceram. Int., 36(2010), No. 3, p. 947. doi: 10.1016/j.ceramint.2009.10.024
    J. Zhang, S. Yan, G.L. Xia, et al., Stabilization of low-valence transition metal towards advanced catalytic effects on the hydrogen storage performance of magnesium hydride, J. Magnes. Alloys, 9(2021), No. 2, p. 647. doi: 10.1016/j.jma.2020.02.029
    Y.T. Shao, H.G. Gao, Q.K. Tang, et al., Ultra-fine TiO2 nanoparticles supported on three-dimensionally ordered macroporous structure for improving the hydrogen storage performance of MgH2, Appl. Surf. Sci., 585(2022), art. No. 152561. doi: 10.1016/j.apsusc.2022.152561
    Q. Li, X. Lin, Q. Luo, et al., Kinetics of the hydrogen absorption and desorption processes of hydrogen storage alloys: A review, Int. J. Miner. Metall. Mater., 29(2022), No. 1, p. 32. doi: 10.1007/s12613-021-2337-8
    J.C. Fuggle, F.U. Hillebrecht, Z. Zołnierek, et al., Electronic structure of Ce and its intermetallic compounds, Phys. Rev. B, 27(1983), No. 12, p. 7330. doi: 10.1103/PhysRevB.27.7330
    T.L. Barr, C.G. Fries, F. Cariati, J.C.J. Bart, and N. Giordano, A spectroscopic investigation of cerium molybdenum oxides, J. Chem. Soc., Dalton Trans., 1983, No. 9, p. 1825.
    L.H. Xie, J.S. Li, T.B. Zhang, and L. Song, Dehydrogenation steps and factors controlling desorption kinetics of a MgCe hydrogen storage alloy, Int. J. Hydrogen Energy, 42(2017), No. 33, p. 21121. doi: 10.1016/j.ijhydene.2017.07.046
    G.H. Majzoobi and K. Rahmani, Mechanical characterization of Mg–B4C nanocomposite fabricated at different strain rates, Int. J. Miner. Metall. Mater., 27(2020), No. 2, p. 252. doi: 10.1007/s12613-019-1902-x
    V.A. Yartys, O. Gutfleisch, V.V. Panasyuk, and I.R.Harris, Desorption characteristics of rare earth (R) hydrides (R = Y, Ce, Pr, Nd, Sm, Gd and Tb) in relation to the HDDR behaviour of R–Fe-based-compounds, J. Alloys Compd., 253-254(1997), p. 128. doi: 10.1016/S0925-8388(96)03097-6
    C. Ren, Z.Z. Fang, C.S. Zhou, et al., In situ X-ray diffraction study of dehydrogenation of MgH2 with Ti-based additives, Int. J. Hydrogen Energy, 39(2014), No. 11, p. 5868. doi: 10.1016/j.ijhydene.2014.01.152
  • 加载中


    通讯作者: 陈斌,
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Share Article

    Article Metrics

    Article Views(317) PDF Downloads(24) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint