Cite this article as: |
Yulin Lin, Di Wang, Chao Yang, Weiwen Zhang, and Zhi Wang, An Al–Al interpenetrating-phase composite by 3D printing and hot extrusion, Int. J. Miner. Metall. Mater., 30(2023), No. 4, pp. 678-688. https://doi.org/10.1007/s12613-022-2543-z |
Di Wang E-mail: mewdlaser@scut.edu.cn
Zhi Wang E-mail: wangzhi@scut.edu.cn
[1] |
Y. Mei, P.Z. Shao, M. Sun, et al., Deformation treatment and microstructure of graphene-reinforced metal matrix nanocomposites: A review of graphene post-dispersion, Int. J. Miner. Metall. Mater., 27(2020), No. 7, p. 888. doi: 10.1007/s12613-020-2048-6
|
[2] |
C.S. Kim, K. Cho, M.H. Manjili, and M. Nezafati, Mechanical performance of particulate-reinforced Al metal-matrix composites (MMCs) and Al metal-matrix nano-composites (MMNCs), J. Mater. Sci, 52(2017), No. 23, p. 13319. doi: 10.1007/s10853-017-1378-x
|
[3] |
E. Safary, R. Taghiabadi, and M.H. Ghoncheh, Mechanical properties of Al–15Mg2Si composites prepared under different solidification cooling rates, Int. J. Miner. Metall. Mater., 29(2022), No. 6, p. 1249. doi: 10.1007/s12613-020-2244-4
|
[4] |
Z. Wang, K. Georgarakis, K.S. Nakayama, et al., Microstructure and mechanical behavior of metallic glass fiber-reinforced Al alloy matrix composites, Sci. Rep., 6(2016), art. No. 24384. doi: 10.1038/srep24384
|
[5] |
M.C. Şenel, Y. Kanca, and M. Gürbüz, Reciprocating sliding wear properties of sintered Al–B4C composites, Int. J. Miner. Metall. Mater., 29(2022), No. 6, p. 1261. doi: 10.1007/s12613-020-2243-5
|
[6] |
C. He, N. Zhao, C. Shi, et al., An approach to obtaining homogeneously dispersed carbon nanotubes in Al powders for preparing reinforced Al-matrix composites, Adv. Mater., 19(2007), No. 8, p. 1128. doi: 10.1002/adma.200601381
|
[7] |
X.L. Ma, C.X. Huang, J. Moering, et al., Mechanical properties of copper/bronze laminates: Role of interfaces, Acta Mater., 116(2016), p. 43. doi: 10.1016/j.actamat.2016.06.023
|
[8] |
X.C. Liu, Z. Liu, Y.J. Liu, et al., Achieving high strength and toughness by engineering 3D artificial nacre-like structures inTi6Al4V–Ti metallic composite, Composites Part B, 230(2022), art. No. 109552. doi: 10.1016/j.compositesb.2021.109552
|
[9] |
M.Y. Zhang, Q. Yu, Z.Q. Liu, et al., 3D printed Mg–NiTi interpenetrating-phase composites with high strength, damping capacity, and energy absorption efficiency, Sci. Adv., 6(2020), No. 19, art. No. eaba5581. doi: 10.1126/sciadv.aba5581
|
[10] |
C.W. Shao, S. Zhao, X.G. Wang, Y.K. Zhu, Z. F.Zhang, and R.O. Ritchie, Architecture of high-strength aluminum–matrix composites processed by a novel microcasting technique, NPG Asia Mater., 11(2019), art. No. 69. doi: 10.1038/s41427-019-0174-2
|
[11] |
T. Maconachie, M. Leary, B. Lozanovski, et al., SLM lattice structures: Properties, performance, applications and challenges, Mater. Des., 183(2019), art. No. 108137. doi: 10.1016/j.matdes.2019.108137
|
[12] |
R.D. Li, H. Chen, H.B. Zhu, M.B. Wang, C. Chen, and T.C. Yuan, Effect of aging treatment on the microstructure and mechanical properties of Al–3.02Mg–0.2Sc–0.1Zr alloy printed by selective laser melting, Mater. Des., 168(2019), art. No. 107668. doi: 10.1016/j.matdes.2019.107668
|
[13] |
R.D. Li, M.B. Wang, Z.M. Li, P. Cao, T.C. Yuan, and H.B. Zhu, Developing a high-strength Al–Mg–Si–Sc–Zr alloy for selective laser melting: Crack-inhibiting and multiple strengthening mechanisms, Acta Mater., 193(2020), p. 83. doi: 10.1016/j.actamat.2020.03.060
|
[14] |
Z.H. Wang, X. Lin, N. Kang, Y.L. Hu, J. Chen, and W.D. Huang, Strength-ductility synergy of selective laser melted Al–Mg–Sc–Zr alloy with a heterogeneous grain structure, Addit. Manuf., 34(2020), art. No. 101260. doi: 10.1016/j.addma.2020.101260
|
[15] |
Z. Wang, R.T. Qu, S. Scudino, et al., Hybrid nanostructured aluminum alloy with super-high strength, NPG Asia Mater., 7(2015), No. 12, art. No. e229. doi: 10.1038/am.2015.129
|
[16] |
R.L. Ma, C.Q. Peng, Z.Y. Cai, et al., Manipulating the microstructure and tensile properties of selective laser melted Al–Mg–Sc–Zr alloy through heat treatment, J. Alloys Compd., 831(2020), art. No. 154773. doi: 10.1016/j.jallcom.2020.154773
|
[17] |
J.H. Zhao, L.S. Luo, X. Xue, et al., The evolution and characterizations of Al3(ScxZr1−x) phase in Al–Mg-based alloys proceeded by SLM, Mater. Sci. Eng. A, 824(2021), art. No. 141863. doi: 10.1016/j.msea.2021.141863
|
[18] |
A. Spierings, K. Dawson, T. Heeling, et al., Microstructural features of Sc- and Zr-modified Al–Mg alloys processed by selective laser melting, Mater. Des., 115(2017), p. 52. doi: 10.1016/j.matdes.2016.11.040
|
[19] |
Z. Wang, K.G. Prashanth, S. Scudino, et al., Tensile properties of Al matrix composites reinforced with in situ devitrified Al84Gd6Ni7Co3 glassy particles, J. Alloys Compd., 586(2014), p. S419. doi: 10.1016/j.jallcom.2013.04.190
|
[20] |
Z. Wang, K.G. Prashanth, S. Scudino, et al., Effect of ball milling on structure and thermal stability of Al84Gd6Ni7Co3 glassy powders, Intermetallics, 46(2014), p. 97. doi: 10.1016/j.intermet.2013.11.005
|
[21] |
Z. Wang, K.G. Prashanth, K.B. Surreddi, C. Suryanarayana, J. Eckert, and S.Scudino, Pressure-assisted sintering of Al–Gd–Ni–Co amorphous alloy powders, Materialia, 2(2018), p. 157. doi: 10.1016/j.mtla.2018.07.010
|
[22] |
A.E. Pawlowski, Z.C. Cordero, M.R. French, et al., Damage-tolerant metallic composites via melt infiltration of additively manufactured preforms, Mater. Des., 127(2017), p. 346. doi: 10.1016/j.matdes.2017.04.072
|
[23] |
O. Kolednik, J. Predan, F.D. Fischer, and P. Fratzl, Bioinspired design criteria for damage-resistant materials with periodically varying microstructure, Adv. Funct. Mater., 21(2011), No. 19, p. 3634. doi: 10.1002/adfm.201100443
|
[24] |
Y.X. Geng, H. Tang, J.H. Xu, Z.J. Zhang, Y.K. Xiao, and Y. Wu, Strengthening mechanisms of high-performance Al–Mn–Mg–Sc–Zr alloy fabricated by selective laser melting, Sci. China Mater., 64(2021), No. 12, p. 3131. doi: 10.1007/s40843-021-1719-8
|
[25] |
R.L. Ma, C.Q. Peng, Z.Y. Cai, et al., Enhanced strength of the selective laser melted Al–Mg–Sc–Zr alloy by cold rolling, Mater. Sci. Eng. A, 775(2020), art. No. 138975. doi: 10.1016/j.msea.2020.138975
|
[26] |
S.Y. Kim, G.Y. Lee, G.H. Park, et al., High strength nanostructured Al-based alloys through optimized processing of rapidly quenched amorphous precursors, Sci. Rep., 8(2018), No. 1, art. No. 1090. doi: 10.1038/s41598-018-19337-7
|
[27] |
X.J. Shen, C. Zhang, Y.G. Yang, and L. Liu, On the microstructure, mechanical properties and wear resistance of an additively manufactured Ti64/metallic glass composite, Addit. Manuf., 25(2019), p. 499. doi: /10.1016/j.addma.2018.12.006
|
[28] |
Z. Tan, L. Wang, Y.F. Xue, et al., A multiple grain size distributed Al-based composite consist of amorphous/nanocrystalline, submicron grain and micron grain fabricated through spark plasma sintering, J. Alloys Compd., 737(2018), p. 308. doi: 10.1016/j.jallcom.2017.12.102
|
[29] |
R.T. Qu and Z.F. Zhang, A universal fracture criterion for high-strength materials, Sci. Rep., 3(2013), art. No. 1117. doi: 10.1038/srep01117
|