Shulei Yang, Shufeng Yang, Wei Liu, Jingshe Li, Jinguo Gao,  and Yi Wang, Microstructure, segregation and precipitate evolution in directionally solidified GH4742 superalloy, Int. J. Miner. Metall. Mater., 30(2023), No. 5, pp. 939-948. https://doi.org/10.1007/s12613-022-2549-6
Cite this article as:
Shulei Yang, Shufeng Yang, Wei Liu, Jingshe Li, Jinguo Gao,  and Yi Wang, Microstructure, segregation and precipitate evolution in directionally solidified GH4742 superalloy, Int. J. Miner. Metall. Mater., 30(2023), No. 5, pp. 939-948. https://doi.org/10.1007/s12613-022-2549-6
Research Article

Microstructure, segregation and precipitate evolution in directionally solidified GH4742 superalloy

+ Author Affiliations
  • Corresponding author:

    Shufeng Yang    E-mail: yangshufeng@ustb.edu.cn

  • Received: 4 July 2022Revised: 8 September 2022Accepted: 9 September 2022Available online: 10 September 2022
  • The evolution of microstructure, elemental segregation, and precipitation in GH4742 superalloy under a wide range of cooling rates was investigated using zonal melting liquid metal cooling (ZMLMC) experiments. Comparing various nickel-based superalloys, the primary dendrite spacing is significantly linearly correlated with G−1/2V−1/4 at high cooling rates, where G and V are temperature gradient and drawing rate, respectively. As the cooling rate decreases, the primary dendrite spacing increases in a dispersive manner. The secondary dendrite arm spacing is significantly correlated with (GV)−0.4 for all cooling rate ranges. The degree of elemental segregation increases and then decreases as the cooling rate increases, which is due to the competition between solute counter-diffusion and dendrite tip subcooling. With increasing the solidification rate, the size of γ′, carbides, and non-metallic inclusions gradually decreases. The morphology of the γ′ precipitate changes from plume-like to cubic to spherical. The morphology of carbide changes from block to fine-strip then to Chinese-script. The morphology of carbide is controlled by both dendrite interstitial shape and element diffusion. The inclusions are mainly composite inclusions, which usually show the growth of Ti(C,N) with oxide as the heterogeneous nucleation center and carbide on the outer surface of the carbonitride. As the cooling rate increases, the number density of composite inclusions first increases and then decreases, which is closely related to the elemental segregation behavior.
  • loading
  • [1]
    B.J. Zhang, S. Huang, W.Y. Zhang, Q. Tian, and S.F. Chen. Recent development of nickel-based disc alloys and corresponding cast-wrought processing techniques, Acta Metall. Sin., 55(2019), No. 9, p. 1095.
    [2]
    R.H. Wu, Y.S. Zhao, Q. Yin, J.P. Wang, X. Ai, and Z.X. Wen, Atomistic simulation studies of Ni-based superalloys, J. Alloys Compd., 855(2021), art. No. 157355. doi: 10.1016/j.jallcom.2020.157355
    [3]
    M.H. Zhang, B.C. Zhang, Y.J. Wen, and X.H. Qu, Research progress on selective laser melting processing for nickel-based superalloy, Int. J. Miner. Metall. Mater., 29(2022), No. 3, p. 369. doi: 10.1007/s12613-021-2331-1
    [4]
    S.A. Hosseini, S.M. Abbasi, K.Z. Madar, and H.M.K. Yazdi, The effect of boron and zirconium on wrought structure and γ-γ′ lattice misfit characterization in nickel-based superalloy ATI 718Plus, Mater. Chem. Phys., 211(2018), p. 302. doi: 10.1016/j.matchemphys.2018.01.076
    [5]
    X. Xu, R.M. Ward, M.H. Jacobs, P.D. Lee, and M. Mclean, Tree-ring formation during vacuum arc remelting of INCONEL 718: Part I. Experimental investigation, Metall. Mater. Trans. A, 33(2002), No. 6, p. 1795. doi: 10.1007/s11661-002-0188-0
    [6]
    X.Y. Gao, L. Zhang, X.H. Qu, X.W. Chen, and Y.F. Luan, Effect of interaction of refractories with Ni-based superalloy on inclusions during vacuum induction melting, Int. J. Miner. Metall. Mater., 27(2020), No. 11, p. 1551. doi: 10.1007/s12613-020-2098-9
    [7]
    A. Mitchell, Influence of process parameters during secondary melting of nickel based superalloys, Mater. Sci. Technol., 25(2009), No. 2, p. 186. doi: 10.1179/174328408X386989
    [8]
    X.W. Yan, Q.Y. Xu, G.Q. Tian, Q.W. Liu, J.X. Hou, and B.C. Liu, Multi-scale modeling of liquid-metal cooling directional solidification and solidification behavior of nickel-based superalloy casting, J. Mater. Sci. Technol., 67(2021), p. 36. doi: 10.1016/j.jmst.2020.06.051
    [9]
    X.W. Yan, Q.Y. Xu, Q.W. Liu, G.Q. Tian, Z.H. Wen, and B.C. Liu, Dendrite growth in nickel-based superalloy with in situ observation by high temperature confocal laser scanning microscopy and numerical simulation, Mater. Lett., 286(2021), art. No. 129213. doi: 10.1016/j.matlet.2020.129213
    [10]
    Y.J. Zhang, B. Huang, and J.G. Li, Microstructural evolution with a wide range of solidification cooling rates in a Ni-based superalloy, Metall. Mater. Trans. A, 44(2013), No. 4, p. 1641. doi: 10.1007/s11661-013-1645-7
    [11]
    G. Reinhart, D. Grange, L. Abou-Khalil, et al., Impact of solute flow during directional solidification of a Ni-based alloy: In-situ and real-time X-radiography, Acta Mater., 194(2020), p. 68. doi: 10.1016/j.actamat.2020.04.003
    [12]
    L. Ling, Y.F. Han, W. Zhou, et al., Study of microsegregation and laves phase in INCONEL718 superalloy regarding cooling rate during solidification, Metall. Mater. Trans. A, 46(2015), No. 1, p. 354. doi: 10.1007/s11661-014-2614-5
    [13]
    X. Shi, S.C. Duan, W.S. Yang, H.J. Guo, and J. Guo, Effect of cooling rate on microsegregation during solidification of superalloy INCONEL 718 under slow-cooled conditions, Metall. Mater. Trans. B, 49(2018), No. 4, p. 1883. doi: 10.1007/s11663-018-1169-z
    [14]
    L. Wang, Y.J. Yao, J.X. Dong, and M.C. Zhang, Effect of cooling rates on segregation and density variation in the mushy zone during solidification of superalloy Inconel 718, Chem. Eng. Commun., 197(2010), No. 12, p. 1571. doi: 10.1080/00986445.2010.493101
    [15]
    S. Behrouzghaemi and R.J. Mitchell, Morphological changes of γ′ precipitates in superalloy IN738LC at various cooling rates, Mater. Sci. Eng. A, 498(2008), No. 1-2, p. 266. doi: 10.1016/j.msea.2008.07.069
    [16]
    Y.N. Wang, J. Yang, X.L. Xin, R.Z. Wang, and L.Y. Xu, The effect of cooling conditions on the evolution of non-metallic inclusions in high manganese TWIP steels, Metall. Mater. Trans. B, 47(2016), No. 2, p. 1378. doi: 10.1007/s11663-015-0568-7
    [17]
    L. Wang, J. Shen, Y.P. Zhang, H.X. Xu, and H.Z. Fu, Microstructure and mechanical properties of NiAl-based hypereutectic alloy obtained by liquid metal cooling and zone melted liquid metal cooling directional solidification techniques, J. Mater. Res., 31(2016), No. 5, p. 646. doi: 10.1557/jmr.2016.61
    [18]
    Y.J. Zhang and J.G. Li, Characterization of the microstructure evolution and microsegregation in a Ni-based superalloy under super-high thermal gradient directional solidification, Mater. Trans., 53(2012), No. 11, p. 1910. doi: 10.2320/matertrans.M2012173
    [19]
    Y.Z. Zhou, Formation of stray grains during directional solidification of a nickel-based superalloy, Scripta Mater., 65(2011), No. 4, p. 281. doi: 10.1016/j.scriptamat.2011.04.023
    [20]
    A. Wagner, B.A. Shollock, and M. McLean, Grain structure development in directional solidification of nickel-base superalloys, Mater. Sci. Eng. A, 374(2004), No. 1-2, p. 270. doi: 10.1016/j.msea.2004.03.017
    [21]
    S. Kwak, J. Kim, H.S. Ding, et al., Using multiple regression analysis to predict directionally solidified TiAl mechanical property, J. Mater. Sci. Technol., 104(2022), p. 285. doi: 10.1016/j.jmst.2021.06.072
    [22]
    D. Tytko, P.P. Choi, J. Klöwer, A. Kostka, G. Inden, and D. Raabe, Microstructural evolution of a Ni-based superalloy (617B) at 700°C studied by electron microscopy and atom probe tomography, Acta Mater., 60(2012), No. 4, p. 1731. doi: 10.1016/j.actamat.2011.11.020
    [23]
    Z. Qiao, C. Li, H.J. Zhang, H.Y. Liang, Y.C. Liu, and Y. Zhang, Evaluation on elevated-temperature stability of modified 718-type alloys with varied phase configurations, Int. J. Miner. Metall. Mater., 27(2020), No. 8, p. 1123. doi: 10.1007/s12613-019-1949-8
    [24]
    S.F. Yang, S.L. Yang, J.L. Qu, et al., Inclusions in wrought superalloys: A review, J. Iron Steel Res. Int., 28(2021), No. 8, p. 921. doi: 10.1007/s42243-021-00617-y
    [25]
    D.Y. Hu, T. Wang, Q.H. Ma, et al., Effect of inclusions on low cycle fatigue lifetime in a powder metallurgy nickel-based superalloy FGH96, Int. J. Fatigue, 118(2019), p. 237. doi: 10.1016/j.ijfatigue.2018.09.019
    [26]
    J. Jiang, J. Yang, T.T. Zhang, F.P.E. Dunne, and T.B. Britton, On the mechanistic basis of fatigue crack nucleation in Ni superalloy containing inclusions using high resolution electron backscatter diffraction, Acta Mater., 97(2015), p. 367. doi: 10.1016/j.actamat.2015.06.035
    [27]
    S.K. Michelic, D. Loder, T. Reip, A. Ardehali Barani, and C. Bernhard, Characterization of TiN, TiC and Ti(C, N) in titanium-alloyed ferritic chromium steels focusing on the significance of different particle morphologies, Mater. Charact., 100(2015), p. 61. doi: 10.1016/j.matchar.2014.12.014
    [28]
    J.D. Hunt, Steady state columnar and equiaxed growth of dendrites and eutectic, Mater. Sci. Eng., 65(1984), No. 1, p. 75. doi: 10.1016/0025-5416(84)90201-5
    [29]
    W. Kurz and D.J. Fisher, Fundamentals of Solidification, Trans Tech Publication, Switzerland, 1984, p. 83.
    [30]
    R. Trivedi, Interdendritic spacing: Part II. A comparison of theory and experiment, Metall. Mater. Trans. A, 15(1984), No. 6, p. 977. doi: 10.1007/BF02644689
    [31]
    H.S. Whitesell, L. Li, and R.A. Overfelt, Influence of solidification variables on the dendrite arm spacings of Ni-based superalloys, Metall. Mater. Trans. B, 31(2000), No. 3, p. 546. doi: 10.1007/s11663-000-0162-4
    [32]
    P.N. Quested and M. McLean, Solidification morphologies in directionally solidified superalloys, Mater. Sci. Eng., 65(1984), No. 1, p. 171. doi: 10.1016/0025-5416(84)90210-6
    [33]
    G.K. Bouse and J.R. Mihalisin, Superalloys, Supercomposites and Superceramics, Academic Press Inc., London, 1989, p. 99.
    [34]
    S.N. Tewari, M. Vijayakumar, J.E. Lee, and P.A. Curreri, Solutal partition coefficients in nickel-based superalloy PWA-1480, Mater. Sci. Eng. A, 141(1991), No. 1, p. 97. doi: 10.1016/0921-5093(91)90713-W
    [35]
    N. D'Souza, M.G. Ardakani, A. Wagner, B.A. Shollock, and M. McLean, Morphological aspects of competitive grain growth during directional solidification of a nickel-base superalloy, CMSX4, J. Mater. Sci., 37(2002), No. 3, p. 481. doi: 10.1023/A:1013753120867
    [36]
    J.A. Sarreal and G.J. Abbaschian, The effect of solidification rate on microsegregation, Metall. Trans. A, 17(1986), No. 11, p. 2063. doi: 10.1007/BF02645003
    [37]
    X. Tong and C. Beckermann, A diffusion boundary layer model of microsegregation, J. Cryst. Growth, 187(1998), No. 2, p. 289. doi: 10.1016/S0022-0248(97)00878-6
    [38]
    H.Z. Deng, L. Wang, Y. Liu, X. Song, F.Q. Meng, and S. Huang, Evolution behavior of γ″ phase of IN718 superalloy in temperature/stress coupled field, Int. J. Miner. Metall. Mater., 28(2021), No. 12, p. 1949. doi: 10.1007/s12613-021-2317-z
    [39]
    W.G. Zhang, L. Liu, T.W. Huang, X.B. Zhao, Z.H. Yu, and H.Z. Fu, Effect of cooling rate on γ′ precipitate of DZ4125 alloy under high thermal gradient directional solidification, Acta. Metall. Sin., 45(2009), No. 5, p. 592.
    [40]
    X.W. Li, L. Wang, J.S. Dong, and L.H. Lou, Effect of solidification condition and carbon content on the morphology of MC carbide in directionally solidified nickel-base superalloys, J. Mater. Sci. Technol., 30(2014), No. 12, p. 1296. doi: 10.1016/j.jmst.2014.06.010
    [41]
    A. Heckl, R. Rettig, S. Cenanovic, M. Göken, and R.F. Singer, Investigation of the final stages of solidification and eutectic phase formation in Re and Ru containing nickel-base superalloys, J. Cryst. Growth, 312(2010), No. 14, p. 2137. doi: 10.1016/j.jcrysgro.2010.03.041
    [42]
    X.G. Zhang, W. Yang, H.K. Xu, and L.F. Zhang, Effect of cooling rate on the formation of nonmetallic inclusions in X80 pipeline steel, Metals, 9(2019), No. 4, art. No. 392. doi: 10.3390/met9040392
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(2)

    Share Article

    Article Metrics

    Article Views(742) PDF Downloads(77) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return