Huaxin Qi, Jing Bai, Miao Jin, Jiaxin Xu, Xin Liu, Ziqi Guan, Jianglong Gu, Daoyong Cong, Xiang Zhao, and Liang Zuo, First-principles calculations of Ni–(Co)–Mn–Cu–Ti all-d-metal Heusler alloy on martensitic transformation, mechanical and magnetic properties, Int. J. Miner. Metall. Mater., 30(2023), No. 5, pp. 930-938. https://doi.org/10.1007/s12613-022-2566-5
Cite this article as:
Huaxin Qi, Jing Bai, Miao Jin, Jiaxin Xu, Xin Liu, Ziqi Guan, Jianglong Gu, Daoyong Cong, Xiang Zhao, and Liang Zuo, First-principles calculations of Ni–(Co)–Mn–Cu–Ti all-d-metal Heusler alloy on martensitic transformation, mechanical and magnetic properties, Int. J. Miner. Metall. Mater., 30(2023), No. 5, pp. 930-938. https://doi.org/10.1007/s12613-022-2566-5
Research Article

First-principles calculations of Ni–(Co)–Mn–Cu–Ti all-d-metal Heusler alloy on martensitic transformation, mechanical and magnetic properties

+ Author Affiliations
  • Corresponding authors:

    Jing Bai    E-mail: baijing@neuq.edu.cn

    Daoyong Cong    E-mail: dycong@ustb.edu.cn

  • Received: 27 July 2022Revised: 21 October 2022Accepted: 25 October 2022Available online: 26 October 2022
  • The martensitic transformation, mechanical, and magnetic properties of the Ni2Mn1.5−xCuxTi0.5 (x = 0.125, 0.25, 0.375, 0.5) and Ni2−yCoyMn1.5−xCuxTi0.5 [(x = 0.125, y = 0.125, 0.25, 0.375, 0.5) and (x = 0.125, 0.25, 0.375, y = 0.625)] alloys were systematically studied by the first-principles calculations. For the formation energy, the martensite is smaller than the austenite, the Ni–(Co)–Mn–Cu–Ti alloys studied in this work can undergo martensitic transformation. The austenite and non-modulated (NM) martensite always present antiferromagnetic state in the Ni2Mn1.5−xCuxTi0.5 and Ni2−yCoyMn1.5−xCuxTi0.5 (y < 0.625) alloys. When y = 0.625 in the Ni2−yCoyMn1.5−xCuxTi0.5 series, the austenite presents ferromagnetic state while the NM martensite shows antiferromagnetic state. Cu doping can decrease the thermal hysteresis and anisotropy of the Ni–(Co)–Mn–Ti alloy. Increasing Mn and decreasing Ti content can improve the shear resistance and normal stress resistance, but reduce the toughness in the Ni–Mn–Cu–Ti alloy. And the ductility of the Co–Cu co-doping alloy is inferior to that of the Ni–Mn–Cu–Ti and Ni–Co–Mn–Ti alloys. The electronic density of states was studied to reveal the essence of the mechanical and magnetic properties.
  • loading
  • [1]
    M. Callisti and T. Polcar, Microstructural evolution of nanometric Ti(NiCu)2 precipitates in annealed Ni–Ti–Cu thin films, Vacuum, 117(2015), p. 1. doi: 10.1016/j.vacuum.2015.03.028
    [2]
    D.Y. Cong, W.X. Xiong, A. Planes, et al., Colossal elastocaloric effect in ferroelastic Ni–Mn–Ti alloys, Phys. Rev. Lett., 122(2019), No. 25, art. No. 255703. doi: 10.1103/PhysRevLett.122.255703
    [3]
    J.D. Navarro-García, J.L. Sánchez Llamazares, and J.P.Camarillo-Garcia, Synthesis of highly dense spark plasma sintered magnetocaloric Ni–Mn–Sn alloys from melt-spun ribbons, Mater. Lett., 295(2021), art. No. 129857. doi: 10.1016/j.matlet.2021.129857
    [4]
    W.T. Chiu, P. Sratong-on, M. Tahara, V. Chernenko, and H. Hosoda, Large magnetostrains of Ni–Mn–Ga/silicone composite containing system of oriented 5M and 7M martensitic particles, Scripta Mater., 207(2022), art. No. 114265. doi: 10.1016/j.scriptamat.2021.114265
    [5]
    J. Liu, T. Gottschall, K.P. Skokov, J.D. Moore, and O. Gutfleisch, Giant magnetocaloric effect driven by structural transitions, Nat. Mater., 11(2012), No. 7, p. 620. doi: 10.1038/nmat3334
    [6]
    A. Biesiekierski, J.X. Lin, Y.C. Li, D.H. Ping, Y. Yamabe-Mitarai, and C.E. Wen, Impact of ruthenium on mechanical properties, biological response and thermal processing of β-type Ti–Nb–Ru alloys, Acta Biomater., 48(2017), p. 461. doi: 10.1016/j.actbio.2016.09.012
    [7]
    X.L.Yang and J.X. Shang, Electronic mechanism of martensitic transformation in Nb-doped NiTi alloys: A first-principles investigation, ACS Omega, 6(2021), No. 34, p. 22033. doi: 10.1021/acsomega.1c02601
    [8]
    R. Kainuma, Y. Imano, W. Ito, et al., Magnetic-field-induced shape recovery by reverse phase transformation, Nature, 439(2006), No. 7079, p. 957. doi: 10.1038/nature04493
    [9]
    S.Y. Yu, Z.X. Cao, L. Ma, et al., Realization of magnetic field-induced reversible martensitic transformation in NiCoMnGa alloys, Appl. Phys. Lett., 91(2007), No. 10, art. No. 102507. doi: 10.1063/1.2783188
    [10]
    M. Wuttig, L. Liu, K. Tsuchiya, and R.D. James, Occurrence of ferromagnetic shape memory alloys (invited), J. Appl. Phys., 87(2000), No. 9, p. 4707. doi: 10.1063/1.373135
    [11]
    J.A. Monroe, I. Karaman, B. Basaran, et al., Direct measurement of large reversible magnetic-field-induced strain in Ni–Co–Mn–In metamagnetic shape memory alloys, Acta Mater., 60(2012), No. 20, p. 6883. doi: 10.1016/j.actamat.2012.07.040
    [12]
    F.X. Hu, B.G. Shen, J.R. Sun, and G.H. Wu, Large magnetic entropy change in a Heusler alloy Ni52.6Mn23.1Ga24.3 single crystal, Phys. Rev. B, 64(2001), No. 13, art. No. 132412. doi: 10.1103/PhysRevB.64.132412
    [13]
    J. Du, Q. Zheng, W.J. Ren, W.J. Feng, X.G. Liu, and Z.D. Zhang, Magnetocaloric effect and magnetic-field-induced shape recovery effect at room temperature in ferromagnetic Heusler alloy Ni–Mn–Sb, J. Phys. D: Appl. Phys., 40(2007), No. 18, p. 5523. doi: 10.1088/0022-3727/40/18/001
    [14]
    G.Y. Zhang, D. Li, C. Liu, et al., Giant low-field actuated caloric effects in a textured Ni43Mn47Sn10 alloy, Scripta Mater., 201(2021), art. No. 113947. doi: 10.1016/j.scriptamat.2021.113947
    [15]
    H. Wang, D. Li, G. Zhang, et al., Highly sensitive elastocaloric response in a directionally solidified Ni50Mn33In15.5Cu1.5 alloy with strong A preferred orientation, Intermetallics, 140(2022), art. No. 107379. doi: 10.1016/j.intermet.2021.107379
    [16]
    Y.J. Huang, Q.D. Hu, N.M. Bruno, et al., Giant elastocaloric effect in directionally solidified Ni–Mn–In magnetic shape memory alloy, Scripta Mater., 105(2015), p. 42. doi: 10.1016/j.scriptamat.2015.04.024
    [17]
    Z.Y. Wei, W. Sun, Q. Shen, et al., Elastocaloric effect of all-d-metal Heusler NiMnTi(Co) magnetic shape memory alloys by digital image correlation and infrared thermography, Appl. Phys. Lett., 114(2019), No. 10, art. No. 101903. doi: 10.1063/1.5077076
    [18]
    H.L. Yan, L.D. Wang, H.X. Liu, et al., Giant elastocaloric effect and exceptional mechanical properties in an all-d-metal Ni–Mn–Ti alloy: Experimental and ab-initio studies, Mater. Des., 184(2019), art. No. 108180. doi: 10.1016/j.matdes.2019.108180
    [19]
    Z.Y. Wei, E.K. Liu, J.H. Chen, et al., Realization of multifunctional shape-memory ferromagnets in all-d-metal Heusler phases, Appl. Phys. Lett., 107(2015), No. 2, art. No. 022406. doi: 10.1063/1.4927058
    [20]
    K. Liu, S.C. Ma, C.C. Ma, et al., Martensitic transformation and giant magneto-functional properties in all-d-metal Ni–Co–Mn–Ti alloy ribbons, J. Alloys Compd., 790(2019), p. 78. doi: 10.1016/j.jallcom.2019.03.173
    [21]
    Z.Q. Guan, X.J. Jiang, J.L. Gu, et al., Large magnetocaloric effect and excellent mechanical properties near room temperature in Ni–Co–Mn–Ti non-textured polycrystalline alloys, Appl. Phys. Lett., 119(2021), No. 5, art. No. 051904. doi: 10.1063/5.0058609
    [22]
    A. Taubel, B. Beckmann, L. Pfeuffer, et al., Tailoring magnetocaloric effect in all-d-metal Ni–Co–Mn–Ti Heusler alloys: A combined experimental and theoretical study, Acta Mater., 201(2020), p. 425. doi: 10.1016/j.actamat.2020.10.013
    [23]
    X.Z. Liang, J. Bai, J.L. Gu, et al., Probing martensitic transformation, kinetics, elastic and magnetic properties of Ni2−xMn1.5In0.5Co alloys, J. Mater. Sci. Technol., 44(2020), p. 31. doi: 10.1016/j.jmst.2020.01.034
    [24]
    J. Hafner, Atomic-scale computational materials science, Acta Mater., 48(2000), No. 1, p. 71. doi: 10.1016/S1359-6454(99)00288-8
    [25]
    G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B, 59(1999), No. 3, p. 1758. doi: 10.1103/PhysRevB.59.1758
    [26]
    P.E. Blöchl, Projector augmented-wave method, Phys. Rev. B, 50(1994), No. 24, p. 17953. doi: 10.1103/PhysRevB.50.17953
    [27]
    G. Kern, G. Kresse, and J. Hafner, Ab initio calculation of the lattice dynamics and phase diagram of boron nitride, Phys. Rev. B, 59(1999), No. 13, p. 8551. doi: 10.1103/PhysRevB.59.8551
    [28]
    J.P. Perdew, K. Burke, and M.Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett., 77(1996), No. 18, p. 3865. doi: 10.1103/PhysRevLett.77.3865
    [29]
    H.J. Monkhorst and J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B, 13(1976), No. 12, p. 5188. doi: 10.1103/PhysRevB.13.5188
    [30]
    Y. Song, X. Chen, V. Dabade, T.W. Shield, and R.D. James, Enhanced reversibility and unusual microstructure of a phase-transforming material, Nature, 502(2013), No. 7469, p. 85. doi: 10.1038/nature12532
    [31]
    J. Cui, Y.S. Chu, O.O. Famodu, et al., Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width, Nat. Mater., 5(2006), No. 4, p. 286. doi: 10.1038/nmat1593
    [32]
    Z.G. Wu, Z.H. Liu, H. Yang, Y. Liu, and G. Wu, Effect of Co addition on martensitic phase transformation and magnetic properties of Mn50Ni40−xIn10Cox polycrystalline alloys, Intermetallics, 19(2011), No. 12, p. 1839. doi: 10.1016/j.intermet.2011.08.001
    [33]
    Z.B Li, J.J. Yang, D. Li, et al., Tuning the reversible magnetocaloric effect in Ni–Mn–In-based alloys through Co and Cu Co-doping, Adv. Electron. Mater., 5(2019), No. 3, art. No. 1800845. doi: 10.1002/aelm.201800845
    [34]
    M. Kaya, S. Yildirim, E. Yüzüak, I. Dincer, R. Ellialtioglu, and Y. Elerman, The effect of the substitution of Cu for Mn on magnetic and magnetocaloric properties of Ni50Mn34In16, J. Magn. Magn. Mater., 368(2014), p. 191. doi: 10.1016/j.jmmm.2014.05.021
    [35]
    S. Saritaş, M. Kaya, İ. Dinçer, and Y. Elerman, The structural, magnetic, and magnetocaloric properties of Ni43Mn46−xCuxIn11 (x = 0, 0.9, 1.3, and 2.3) Heusler alloys, Metall. Mater. Trans. A, 48(2017), No. 10, p. 5068. doi: 10.1007/s11661-017-4191-x
    [36]
    Z. Yang, D.Y. Cong, Y. Yuan, et al., Large room-temperature elastocaloric effect in a bulk polycrystalline Ni–Ti–Cu–Co alloy with low isothermal stress hysteresis, Appl. Mater. Today, 21(2020), art. No. 100844. doi: 10.1016/j.apmt.2020.100844
    [37]
    Z.Q. Guan, J. Bai, J.L. Gu, et al., First-principles investigation of B2 partial disordered structure, martensitic transformation, elastic and magnetic properties of all-d-metal Ni–Mn–Ti Heusler alloys, J. Mater. Sci. Technol., 68(2021), p. 103. doi: 10.1016/j.jmst.2020.08.002
    [38]
    C.C. Xiong, J. Bai, Y.S. Li, et al., First-principles investigation on phase stability, elastic and magnetic properties of boron doping in Ni–Mn–Ti alloy, Acta Metall. Sin. Engl. Lett., 35(2022), No. 7, p. 1175. doi: 10.1007/s40195-021-01360-9
    [39]
    Z.Q. Guan, J. Bai, Y. Zhang, et al., Revealing essence of magnetostructural coupling of Ni–Co–Mn–Ti alloys by first-principles calculations and experimental verification, Rare Met., 41(2022), No. 6, p. 1933. doi: 10.1007/s12598-021-01947-2
    [40]
    Z. Muthui, R. Musembi, J. Mwabora, and A. Kashyap, Perpendicular magnetic anisotropy in nearly fully compensated ferrimagnetic Heusler alloy Mn0.75Co1.25VIn: An ab initio study, J. Magn. Magn. Mater., 442(2017), p. 343. doi: 10.1016/j.jmmm.2017.06.102
    [41]
    R.V.S. Prasad, M. Manivel Raja, and G. Phanikumar, Microstructure and magnetic properties of rapidly solidified Ni2(Mn,Fe)Ga Heusler alloys, Adv. Mater. Res., 74(2009), p. 215. doi: 10.4028/www.scientific.net/AMR.74.215
    [42]
    Z.N. Ni, X.M. Guo, X.T. Liu, Y.Y, Jiao, F.B. Meng, and H.Z. Luo, Understanding the magnetic structural transition in all-d-metal Heusler alloy Mn2Ni1.25Co0.25Ti0.5, J. Alloys Compd., 775(2019), p. 427. doi: 10.1016/j.jallcom.2018.10.115
    [43]
    J. Bai, J.M. Raulot, Y.D. Zhang, C. Esling, X. Zhao, and L. Zuo, Crystallographic, magnetic, and electronic structures of ferromagnetic shape memory alloys Ni2XGa (X = Mn, Fe, Co) from first-principles calculations, J. Appl. Phys., 109(2011), No. 1, art. No. 014908. doi: 10.1063/1.3524488
    [44]
    J. Bai, J.L. Wang, S.F. Shi, et al., Complete martensitic transformation sequence and magnetic properties of non-stoichiometric Ni2Mn1.2Ga0.8 alloy by first-principles calculations, J. Magn. Magn. Mater., 473(2019), p. 360. doi: 10.1016/j.jmmm.2018.10.079
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Share Article

    Article Metrics

    Article Views(424) PDF Downloads(41) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return