Lingzhi Xie, Zhigang Xu, Yunzhe Qi, Jinrong Liang, Peng He, Qiang Shen, and Chuanbin Wang, Effect of ball milling time on the microstructure and compressive properties of the Fe–Mn–Al porous steel, Int. J. Miner. Metall. Mater., 30(2023), No. 5, pp. 917-929.
Cite this article as:
Lingzhi Xie, Zhigang Xu, Yunzhe Qi, Jinrong Liang, Peng He, Qiang Shen, and Chuanbin Wang, Effect of ball milling time on the microstructure and compressive properties of the Fe–Mn–Al porous steel, Int. J. Miner. Metall. Mater., 30(2023), No. 5, pp. 917-929.
Research Article

Effect of ball milling time on the microstructure and compressive properties of the Fe–Mn–Al porous steel

+ Author Affiliations
  • Corresponding author:

    Zhigang Xu    E-mail:

  • Received: 29 July 2022Revised: 30 October 2022Accepted: 31 October 2022Available online: 3 November 2022
  • In the present work, Fe–Mn–Al–C powder mixtures were manufactured by elemental powders with different ball milling time, and the porous high-Mn and high-Al steel was fabricated by powder sintering. The results indicated that the powder size significantly decreased, and the morphology of the Fe powder tended to be increasingly flat as the milling time increased. However, the prolonged milling duration had limited impact on the phase transition of the powder mixture. The main phases of all the samples sintered at 640°C were α-Fe, α-Mn and Al, and a small amount of Fe2Al5 and Al8Mn5. When the sintering temperature increased to 1200°C, the phase composition was mainly comprised of γ-Fe and α-Fe. The weight loss fraction of the sintered sample decreased with milling time, i.e., 8.3wt% after 20 h milling compared to 15.3wt% for 10 h. The Mn depletion region (MDR) for the 10, 15, and 20 h milled samples was about 780, 600, and 370 μm, respectively. The total porosity of samples sintered at 640°C decreased from ~46.6vol% for the 10 h milled powder to ~44.2vol% for 20 h milled powder. After sintering at 1200°C, the total porosity of sintered samples prepared by 10 and 20 h milled powder was ~58.3vol% and ~51.3vol%, respectively. The compressive strength and ductility of the 1200°C sintered porous steel increased as the milling time increased.
  • loading
  • [1]
    A.C. Kaya, P. Zaslansky, M. Ipekoglu, and C. Fleck, Strain hardening reduces energy absorption efficiency of austenitic stainless steel foams while porosity does not, Mater. Des., 143(2018), p. 297. doi: 10.1016/j.matdes.2018.02.009
    Z.G. Xu, J.H. Du, C. Zhuang, S.Y. Huang, C.B. Wang, and Q. Shen, Evolution of aluminum particle-involved phase transformation and pore structure in an elemental Fe–Mn–Al–C powder compact during vacuum sintering, Vacuum, 175(2020), p. 109289. doi: 10.1016/j.vacuum.2020.109289
    M. Su, Q. Zhou, and H. Wang, Mechanical properties and constitutive models of foamed steels under monotonic and cyclic loading, Constr. Build. Mater., 231(2020), p. 116959. doi: 10.1016/j.conbuildmat.2019.116959
    Z.G. Xu, J.R. Liang, Y.M. Chen, W.J. Li, C.B. Wang, and Q. Shen, Sintering of a porous steel with high-Mn and high-Al content in vacuum, Vacuum, 196(2022), p. 110746. doi: 10.1016/j.vacuum.2021.110746
    I. Mutlu and E.Oktay, Corrosion behaviour and microstructure evolution of 17-4 PH stainless steel foam, Corros. Rev., 30(2012), No. 3-4, p. 125. doi: 10.1515/corrrev-2011-0037
    S. Bobaru, V. Rico-Gavira, A. García-Valenzuela, C. López-Santos, and A.R.González-Elipe, Electron beam evaporated vs. magnetron sputtered nanocolumnar porous stainless steel: Corrosion resistance, wetting behavior and anti-bacterial activity, Mater. Today Commun., 31(2022), p. 103266. doi: 10.1016/j.mtcomm.2022.103266
    X.Q. Ni, D.C. Kong, Y. Wen, et al., Anisotropy in mechanical properties and corrosion resistance of 316L stainless steel fabricated by selective laser melting, Int. J. Miner. Metall. Mater., 26(2019), No. 3, p. 319. doi: 10.1007/s12613-019-1740-x
    A. Rabiei, K. Karimpour, D. Basu, and M.Janssens, Steel-steel composite metal foam in simulated pool fire testing, Int. J. Therm. Sci., 153(2020), p. 106336. doi: 10.1016/j.ijthermalsci.2020.106336
    C.H. Wang, F.C. Jiang, S.Q. Shao, T.M. Yu, and C.H. Guo, Acoustic properties of 316L stainless steel hollow sphere composites fabricated by pressure casting, Metals, 10(2020), No. 8, p. 1047. doi: 10.3390/met10081047
    X.B. Xu, P.S. Liu, G.F. Chen, and C.P. Li, Sound absorption performance of highly porous stainless steel foam with reticular structure, Met. Mater. Int., 27(2021), No. 9, p. 3316. doi: 10.1007/s12540-020-00701-0
    H. Jain, R. Kumar, G. Gupta, and D.P. Mondal, Microstructure, mechanical and EMI shielding performance in open cell austenitic stainless steel foam made through PU foam template, Mater. Chem. Phys., 241(2020), p. 122273. doi: 10.1016/j.matchemphys.2019.122273
    T.Y. Lim, W. Zhai, X. Song, et al., Effect of slurry composition on the microstructure and mechanical properties of SS316L open-cell foam, Mater. Sci. Eng. A, 772(2020), p. 138798. doi: 10.1016/j.msea.2019.138798
    Y. Guo, M.C. Zhao, B. Xie, et al., In vitro corrosion resistance and antibacterial performance of novel Fe–xCu biomedical alloys prepared by selective laser melting, Adv. Eng. Mater., 23(2021), No. 4, p. 2001000. doi: 10.1002/adem.202001000
    S. Yiatros, O. Marangos, R.A. Votsis, and F.P. Brennan, Compressive properties of granular foams of adhesively bonded steel hollow sphere blocks, Mech. Res. Commun., 94(2018), p. 13. doi: 10.1016/j.mechrescom.2018.08.005
    H. Sazegaran and S.M.M. Nezhad, Cell morphology, porosity, microstructure and mechanical properties of porous Fe–C–P alloys, Int. J. Miner. Metall. Mater., 28(2021), No. 2, p. 257. doi: 10.1007/s12613-020-1995-2
    C. Mapelli, D. Mombelli, A. Gruttadauria, S. Barella, and E.M. Castrodeza, Performance of stainless steel foams produced by infiltration casting techniques, J. Mater. Process. Technol., 213(2013), No. 11, p. 1846. doi: 10.1016/j.jmatprotec.2013.05.010
    K. Alvarez, K. Sato, S.K. Hyun, and H. Nakajima, Fabrication and properties of Lotus-type porous nickel-free stainless steel for biomedical applications, Mater. Sci. Eng. C, 28(2008), No. 1, p. 44. doi: 10.1016/j.msec.2007.01.010
    C. Garcia-Cabezon, C. Garcia-Hernandez, M.L. Rodriguez-Mendez, and F.Martin-Pedrosa, A new strategy for corrosion protection of porous stainless steel using polypyrrole films, J. Mater. Sci. Technol., 37(2020), p. 85. doi: 10.1016/j.jmst.2019.05.071
    M. Mokhtari, T. Wada, C. Le Bourlot, et al., Corrosion resistance of porous ferritic stainless steel produced by liquid metal dealloying of Incoloy 800, Corros. Sci., 166(2020), No. 7, p. 108468.
    Y.B. Ren, J. Li, and K. Yang, Preliminary study on porous high-manganese 316L stainless steel through physical vacuum dealloying, Acta Metall. Sin., 30(2017), No. 8, p. 731. doi: 10.1007/s40195-017-0600-9
    D.C. Kong, X.Q. Ni, C.F. Dong, et al., Anisotropy in the microstructure and mechanical property for the bulk and porous 316L stainless steel fabricated via selective laser melting, Mater. Lett., 235(2019), p. 1. doi: 10.1016/j.matlet.2018.09.152
    Y. Zhu, G.L. Lin, M.M. Khonsari, J.H. Zhang, and H.Y. Yang, Material characterization and lubricating behaviors of porous stainless steel fabricated by selective laser melting, J. Mater. Process. Technol., 262(2018), p. 41. doi: 10.1016/j.jmatprotec.2018.06.027
    H.Y. Chen, D.D. Gu, Q. Ge, et al., Role of laser scan strategies in defect control, microstructural evolution and mechanical properties of steel matrix composites prepared by laser additive manufacturing, Int. J. Miner. Metall. Mater., 28(2021), No. 3, p. 462. doi: 10.1007/s12613-020-2133-x
    K. Li, J.B. Zhan, T.B. Yang, et al., Homogenization timing effect on microstructure and precipitation strengthening of 17-4PH stainless steel fabricated by laser powder bed fusion, Addit. Manuf., 52(2022), art. No. 102672. doi: 10.1016/j.addma.2022.102672
    Z.Y. Liu, S.J. Xu, B.L. Xiao, P. Xue, W.G. Wang, and Z.Y. Ma, Effect of ball-milling time on mechanical properties of carbon nanotubes reinforced aluminum matrix composites, Composites Part A, 43(2012), No. 12, p. 2161. doi: 10.1016/j.compositesa.2012.07.026
    F. Ghadami, A.S.R. Aghdam, and S. Ghadami, Characterization of MCrAlY/nano-Al2O3 nanocomposite powder produced by high-energy mechanical milling as feedstock for high-velocity oxygen fuel spraying deposition, Int. J. Miner. Metall. Mater., 28(2021), No. 9, p. 1534. doi: 10.1007/s12613-020-2113-1
    S.A. Hewitt and K.A. Kibble, Effects of ball milling time on the synthesis and consolidation of nanostructured WC–Co composites, Int. J. Refract. Met. Hard Mater., 27(2009), No. 6, p. 937. doi: 10.1016/j.ijrmhm.2009.05.006
    A. Nouri, P.D. Hodgson, and C. Wen, Effect of ball-milling time on the structural characteristics of biomedical porous Ti–Sn–Nb alloy, Mater. Sci. Eng. C, 31(2011), No. 5, p. 921. doi: 10.1016/j.msec.2011.02.011
    R. Raimundo, R. Reinaldo, N. Câmara, et al., Al2O3–10wt% Fe composite prepared by high energy ball milling: Structure and magnetic properties, Ceram. Int., 47(2021), No. 1, p. 984. doi: 10.1016/j.ceramint.2020.08.212
    C. Garcia-Cabezon, Y. Blanco, M. Rodriguez-Mendez, and F. Martin-Pedrosa, Characterization of porous nickel-free austenitic stainless steel prepared by mechanical alloying, J. Alloys Compd., No.(2017), p. 46.
    N. Bekoz and E. Oktay, The role of pore wall microstructure and micropores on the mechanical properties of Cu–Ni–Mo based steel foams, Mater. Sci. Eng. A, 612(2014), p. 387. doi: 10.1016/j.msea.2014.06.064
    G. Castro, S.R. Nutt, and X.W. Chen, Compression and low-velocity impact behavior of aluminum syntactic foam, Mater. Sci. Eng. A, 578(2013), p. 222. doi: 10.1016/j.msea.2013.04.081
    K. Kato, A. Yamamoto, S. Ochiai, et al., Cytocompatibility and mechanical properties of novel porous 316L stainless steel, Mater. Sci. Eng. C, 33(2013), No. 5, p. 2736. doi: 10.1016/j.msec.2013.02.038
    D.P. Mondal, H. Jain, S. Das, and A.K. Jha, Stainless steel foams made through powder metallurgy route using NH4HCO3 as space holder, Mater. Des., 88(2015), p. 430. doi: 10.1016/j.matdes.2015.09.020
    K.G. Chin, H.J. Lee, J.H. Kwak, J.Y. Kang, and B.J. Lee, Thermodynamic calculation on the stability of (Fe, Mn)3AlC carbide in high aluminum steels, J. Alloys Compd., 505(2010), No. 1, p. 217. doi: 10.1016/j.jallcom.2010.06.032
    Z.G. Xu, J.R. Liang, and J.H. Du, The microstructure and compressive properties of a sintered Fe–Mn–Al porous steel produced by blended elemental powder mixture, Int. J. Mod. Phys. B, 36(2022), No. 12-13, p. 2240058.
    C.B. Zhuang, Z.G. Xu, S.Y. Huang, Y. Xia, C.B. Wang, and Q. Shen, In situ synthesis of a porous high-Mn and high-Al steel by a novel two-step pore-forming technique in vacuum sintering, J. Mater. Sci. Technol., 39(2020), p. 82. doi: 10.1016/j.jmst.2019.09.008
    L.H. Zhou, Z. Li, S.S. Wang, et al., Calculation of phase equilibria in Al–Fe–Mn ternary system involving three new ternary intermetallic compounds, Adv. Manuf., 6(2018), No. 2, p. 247. doi: 10.1007/s40436-017-0199-0
    A.T. Phan, M.K. Paek, and Y.B. Kang, Phase equilibria and thermodynamics of the Fe–Al–C system: Critical evaluation, experiment and thermodynamic optimization, Acta Mater., 79(2014), p. 1. doi: 10.1016/j.actamat.2014.07.006
    B. Hallstedt, A.V. Khvan, B.B. Lindahl, M. Selleby, and S. Liu, PrecHiMn-4—A thermodynamic database for high-Mn steels, Calphad, 56(2017), p. 49. doi: 10.1016/j.calphad.2016.11.006
    W.S. Zheng, S. He, M. Selleby, et al., Thermodynamic assessment of the Al–C–Fe system, Calphad, 58(2017), p. 34. doi: 10.1016/j.calphad.2017.05.003
    M.S. Kim and Y.B.Kang, Development of thermodynamic database for high Mn-high Al steels: Phase equilibria in the Fe–Mn–Al–C system by experiment and thermodynamic modeling, Calphad, 51(2015), p. 89. doi: 10.1016/j.calphad.2015.08.004
  • 加载中


    通讯作者: 陈斌,
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(1)

    Share Article

    Article Metrics

    Article Views(138) PDF Downloads(25) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint