Cite this article as: |
Jingdi Cao, Takuya Hhasegawa, Yusuke Asakura, Akira Yamakata, Peng Sun, Wenbin Cao, and Shu Yin, Synthesis of crystal-phase and color tunable mixed anion co-doped titanium oxides and their controllable photocatalytic activity, Int. J. Miner. Metall. Mater., 30(2023), No. 10, pp. 2036-2043. https://doi.org/10.1007/s12613-022-2573-6 |
Shu Yin E-mail: yin.shu.b5@tohoku.ac.jp
Supplementary Information-10.1007s12613-022-2573-6.docx |
[1] |
P. Zhang, S. Yin, and T. Sato, Synthesis of high-activity TiO2 photocatalyst via environmentally friendly and novel microwave assisted hydrothermal process, Appl. Catal. B, 89(2009), No. 1-2, p. 118. doi: 10.1016/j.apcatb.2008.12.002
|
[2] |
S. Yin and Y. Asakura, Recent research progress on mixed valence state tungsten based materials, Tungsten, 1(2019), No. 1, p. 5. doi: 10.1007/s42864-019-00001-0
|
[3] |
A. Hermawan, N.L.W. Septiani, A. Taufik, B. Yuliarto, and S. Yin, Advanced strategies to improve performances of molybdenum-based gas sensors, Nano-Micro Lett., 13(2021), No. 1, art. No. 207. doi: 10.1007/s40820-021-00724-1
|
[4] |
J. Cao, T. Hasegawa, Y. Asakura, et al., Synthesis and color tuning of titanium oxide inorganic pigment by phase control and mixed-anion co-doping, Adv. Powder Technol., 33(2022), No. 5, art. No. 103576. doi: 10.1016/j.apt.2022.103576
|
[5] |
S. Yin, Creation of advanced optical responsive functionality of ceramics by green processes, J. Ceram. Soc. Jpn., 123(2015), No. 1441, p. 823. doi: 10.2109/jcersj2.123.823
|
[6] |
Y. Xue and S. Yin, Element doping: A marvelous strategy for pioneering the smart applications of VO2, Nanoscale, 14(2022), No. 31, p. 11054. doi: 10.1039/D2NR01864K
|
[7] |
A. Hermawan, T. Amrillah, A. Riapanitra, W.J. Ong, and S. Yin, Prospects and challenges of MXenes as emerging sensing materials for flexible and wearable breath-based biomarker diagnosis, Adv. Healthcare Mater., 10(2021), No. 20, art. No. 2100970. doi: 10.1002/adhm.202100970
|
[8] |
S. Yin and T. Hasegawa, Morphology control of transition metal oxides by liquid-phase process and their material development, KONA Powder Part. J., 40(2023), p. 94. doi: 10.14356/kona.2023015
|
[9] |
A. Hermawan, H. Son, Y. Asakura, T. Mori, and S. Yin, Synthesis of morphology controllable aluminum nitride by direct nitridation of γ-AlOOH in the presence of N2H4 and their sintering behavior, J. Asian Ceram. Soc., 6(2018), No. 1, p. 63. doi: 10.1080/21870764.2018.1439611
|
[10] |
A. Hermawan, Y. Asakura, and S. Yin, Morphology control of aluminum nitride (AlN) for a novel high-temperature hydrogen sensor, Int. J. Miner. Metall. Mater., 27(2020), No. 11, p. 1560. doi: 10.1007/s12613-020-2143-8
|
[11] |
S. Chu and A. Majumdar, Opportunities and challenges for a sustainable energy future, Nature, 488(2012), No. 7411, p. 294. doi: 10.1038/nature11475
|
[12] |
A.G. Olabi, M. Mahmoud, B. Soudan, T. Wilberforce, and M. Ramadan, Geothermal based hybrid energy systems, toward eco-friendly energy approaches, Renewable Energy, 147(2020), p. 2003. doi: 10.1016/j.renene.2019.09.140
|
[13] |
N.L. Panwar, S.C. Kaushik, and S. Kothari, Role of renewable energy sources in environmental protection: A review, Renewable Sustainable Energy Rev., 15(2011), No. 3, p. 1513. doi: 10.1016/j.rser.2010.11.037
|
[14] |
G. Liu, L.C. Yin, J. Wang, et al., A red anatase TiO2 photocatalyst for solar energy conversion, Energy Environ. Sci., 5(2012), No. 11, p. 9603. doi: 10.1039/c2ee22930g
|
[15] |
G. Liu, J. Pan, L. Yin, et al., Heteroatom-modulated switching of photocatalytic hydrogen and oxygen evolution preferences of anatase TiO2 microspheres, Adv. Funct. Mater., 22(2012), No. 15, p. 3233. doi: 10.1002/adfm.201200414
|
[16] |
D. Wang, S. Wang, B. Li, Z. Zhang, and Q. Zhang, Tunable band gap of N, V co-doped Ca:TiO2B (CaTi5O11) for visible-light photocatalysis, Int. J. Hydrogen Energy, 44(2019), No. 10, p. 4716. doi: 10.1016/j.ijhydene.2018.12.223
|
[17] |
X. Li, Y. Liu, P. Yang, and Y. Shi, Visible light-driven photocatalysis of W, N co-doped TiO2, Particuology, 11(2013), No. 6, p. 732. doi: 10.1016/j.partic.2012.06.018
|
[18] |
S. Komatsuda, Y. Asakura, J.J.M. Vequizo, A. Yamakata, and S. Yin, Enhanced photocatalytic NOx decomposition of visible-light responsive F-TiO2/(N, C)-TiO2 by charge transfer between F-TiO2 and (N, C)-TiO2 through their doping levels, Appl. Catal. B, 238(2018), p. 358. doi: 10.1016/j.apcatb.2018.07.038
|
[19] |
H.T. Gao, Y.Y. Liu, C.H. Ding, D.M. Dai, and G.J. Liu, Synthesis, characterization, and theoretical study of N, S-codoped nano-TiO2 with photocatalytic activities, Int. J. Miner. Metall. Mater., 18(2011), No. 5, p. 606. doi: 10.1007/s12613-011-0485-y
|
[20] |
N. Pienutsa, K. Yannawibut, J. Phattharaphongmanee, O. Thonganantakul, and S. Srinives, Titanium dioxide-graphene composite electrochemical sensor for detection of hexavalent chromium, Int. J. Miner. Metall. Mater., 29(2022), No. 3, p. 529. doi: 10.1007/s12613-021-2338-7
|
[21] |
H.H. Wang, W.X. Liu, J. Ma, et al., Design of (GO/TiO2)N one-dimensional photonic crystal photocatalysts with improved photocatalytic activity for tetracycline degradation, Int. J. Miner. Metall. Mater., 27(2020), No. 6, p. 830. doi: 10.1007/s12613-019-1923-5
|
[22] |
Z. Gu, Z. Cui, Z. Wang, et al., Carbon vacancies and hydroxyls in graphitic carbon nitride: Promoted photocatalytic NO removal activity and mechanism, Appl. Catal. B, 279(2020), art. No. 119376. doi: 10.1016/j.apcatb.2020.119376
|
[23] |
C. Noda, Y. Asakura, K. Shiraki, A. Yamakata, and S. Yin, Synthesis of three-component C3N4/rGO/C-TiO2 photocatalyst with enhanced visible-light responsive photocatalytic deNO activity, Chem. Eng. J., 390(2020), art. No. 124616. doi: 10.1016/j.cej.2020.124616
|
[24] |
Z. Gu, B. Zhang, Y. Asakura, et al., Alkali-assisted hydrothermal preparation of g-C3N4/rGO nanocomposites with highly enhanced photocatalytic NOx removal activity, Appl. Surf. Sci., 521(2020), art. No. 146213. doi: 10.1016/j.apsusc.2020.146213
|
[25] |
H. Li, S. Yin, Y. Wang, and T. Sato, Current progress on persistent fluorescence-assisted composite photocatalysts, Funct. Mater. Lett., 6(2013), No. 6, art. No. 1330005. doi: 10.1142/S1793604713300053
|
[26] |
X. Wu, S. Yin, Q. Dong, et al., UV, visible and near-infrared lights induced NOx destruction activity of (Yb, Er)-NaYF4/C-TiO2 composite, Sci. Rep., 3(2013), art. No. 2918. doi: 10.1038/srep02918
|
[27] |
X. Wu, S. Yin, Q. Dong, and T. Sato, Blue/green/red colour emitting up-conversion phosphors coupled C-TiO2 composites with UV, visible and NIR responsive photocatalytic performance, Appl. Catal. B, 156-157(2014), p. 257. doi: 10.1016/j.apcatb.2014.03.028
|
[28] |
R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science, 293(2001), No. 5528, p. 269. doi: 10.1126/science.1061051
|
[29] |
H. Lin, L. Li, M. Zhao, et al., Synthesis of high-quality brookite TiO2 single-crystalline nanosheets with specific facets exposed: Tuning catalysts from inert to highly reactive, J. Am. Chem. Soc., 134(2012), No. 20, p. 8328. doi: 10.1021/ja3014049
|
[30] |
A. Inagawa and N. Uehara, Development of colorimetric analysis with smartphones-captured images based on RGB-spectrum conversion methods, Bunseki Kagaku, 69(2020), No. 12, p. 693. doi: 10.2116/bunsekikagaku.69.693
|
[31] |
Japanese Industrial Standard, Fine ceramics (advanced ceramics, advanced technical ceramics)– Test Method for Air Purification Performance of Photocatalytic Materials–Part 1: Removal of Nitric Oxide, Japanese Standards Association, Tokyo, 2016.
|
[32] |
V.V. Ivanov, I.A. Blokhina, and S.D. Kirik, Synthesis of TiB2 by carbothermal reduction of oxides at lowered temperatures, Russ J. Appl. Chem., 86(2013), No. 11, p. 1650. doi: 10.1134/S1070427213110049
|
[33] |
A. Ghanbari, M. Sakaki, A. Faeghinia, M.S. Bafghi, and K. Yanagisawa, Synthesis of nanocrystalline TiB2 powder from TiO2, B2O3 and Mg reactants through microwave-assisted self-propagating high-temperature synthesis method, Bull. Mater. Sci., 39(2016), No. 4, p. 925. doi: 10.1007/s12034-016-1229-4
|
[34] |
E. Finazzi, C. Di Valentin, and G. Pacchioni, Boron-doped anatase TiO2: Pure and hybrid DFT calculations, J. Phys. Chem. C, 113(2009), No. 1, p. 220. doi: 10.1021/jp8072238
|
[35] |
Y. Du, Z. Wang, H. Chen, H.Y. Wang, G. Liu, and Y. Weng, Effect of trap states on photocatalytic properties of boron-doped anatase TiO2 microspheres studied by time-resolved infrared spectroscopy, Phys. Chem. Chem. Phys., 21(2019), No. 8, p. 4349. doi: 10.1039/C8CP06109B
|
[36] |
C. Di Valentin, G. Pacchioni, A. Selloni, S. Livraghi, and E. Giamello, Characterization of paramagnetic species in N-doped TiO2 powders by EPR spectroscopy and DFT calculations, J. Phys. Chem. B, 109(2005), No. 23, p. 11414. doi: 10.1021/jp051756t
|
[37] |
Z. Zhang, X. Wang, J. Long, Q. Gu, Z. Ding, and X. Fu, Nitrogen-doped titanium dioxide visible light photocatalyst: Spectroscopic identification of photoactive centers, J. Catal., 276(2010), No. 2, p. 201. doi: 10.1016/j.jcat.2010.07.033
|
[38] |
T. Kanazawa, K. Kato, R. Yamaguchi, et al., Cobalt aluminate spinel as a cocatalyst for photocatalytic oxidation of water: Significant hole-trapping effect, ACS Catal., 10(2020), No. 9, p. 4960. doi: 10.1021/acscatal.0c00944
|
[39] |
A. Miyoshi, K. Kato, T. Yokoi, et al., Nano vs. bulk rutile TiO2: N, F in Z-scheme overall water splitting under visible light, J. Mater. Chem. A, 8(2020), No. 24, p. 11996. doi: 10.1039/D0TA04450D
|
[40] |
M. Landmann, E. Rauls, and W.G. Schmidt, The electronic structure and optical response of rutile, anatase and brookite TiO2, J. Phys. Condens. Matter, 24(2012), No. 19, art. No. 195503. doi: 10.1088/0953-8984/24/19/195503
|
[41] |
C. Di Valentin, G. Pacchioni, and A. Selloni, Origin of the different photoactivity of N-doped anatase and rutile TiO2, Phys. Rev. B, 70(2004), No. 8, art. No. 085116. doi: 10.1103/PhysRevB.70.085116
|
[42] |
A. Bjelajac, R. Petrović, M. Popović, et al., Doping of TiO2 nanotubes with nitrogen by annealing in ammonia for visible light activation: Influence of pre- and post-annealing in air, Thin Solid Films, 692(2019), art. No. 137598. doi: 10.1016/j.tsf.2019.137598
|
[43] |
H.M. Hwang, S. Oh, J.H. Shim, et al., Phase-selective disordered anatase/ordered rutile interface system for visible-light-driven, metal-free CO2 reduction, ACS Appl. Mater. Interfaces, 11(2019), No. 39, p. 35693. doi: 10.1021/acsami.9b10837
|
[44] |
G. Colón, M.C. Hidalgo, and J.A. Navio, Photocatalytic deactivation of commercial TiO2 samples during simultaneous photoreduction of Cr(VI) and photooxidation of salicylic acid, J. Photochem. Photobiol. A, 138(2001), No. 1, p. 79. doi: 10.1016/S1010-6030(00)00372-5
|
[45] |
H. Yu, L. Liu, X. Wang, P. Wang, J. Yu, and Y. Wang, The dependence of photocatalytic activity and photoinduced self-stability of photosensitive AgI nanoparticles, Dalton Trans., 41(2012), No. 34, p. 10405. doi: 10.1039/c2dt30864a
|
[46] |
X. Chen, L. Liu, P.Y. Yu, and S.S. Mao, Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals, Science, 331(2011), No. 6018, p. 746. doi: 10.1126/science.1200448
|