Dong Wang, Chen Ma, Jinyu Liu, Weidong Li, Wei Shang, Ning Peng,  and Yuqing Wen, Corrosion resistance and anti-soiling performance of micro-arc oxidation/graphene oxide/stearic acid superhydrophobic composite coating on magnesium alloys, Int. J. Miner. Metall. Mater., 30(2023), No. 6, pp. 1128-1139. https://doi.org/10.1007/s12613-023-2596-7
Cite this article as:
Dong Wang, Chen Ma, Jinyu Liu, Weidong Li, Wei Shang, Ning Peng,  and Yuqing Wen, Corrosion resistance and anti-soiling performance of micro-arc oxidation/graphene oxide/stearic acid superhydrophobic composite coating on magnesium alloys, Int. J. Miner. Metall. Mater., 30(2023), No. 6, pp. 1128-1139. https://doi.org/10.1007/s12613-023-2596-7
Research Article

Corrosion resistance and anti-soiling performance of micro-arc oxidation/graphene oxide/stearic acid superhydrophobic composite coating on magnesium alloys

+ Author Affiliations
  • Magnesium (Mg) alloys, the lightest metal construction material used in industry, play a vital role in future development. However, the poor corrosion resistance of Mg alloys in corrosion environments largely limits their potential wide applications. Therefore, a micro-arc oxidation/graphene oxide/stearic acid (MAO/GO/SA) superhydrophobic composite coating with superior corrosion resistance was fabricated on a Mg alloy AZ91D through micro-arc oxidation (MAO) technology, electrodeposition technique, and self-assembly technology. The composition and microstructure of the coating were characterized by scanning electron microscopy, X-ray diffraction, energy dispersive spectroscopy, and Raman spectroscopy. The effective protection of the MAO/GO/SA composite coating applied to a substrate was evaluated using potentiodynamic polarization, electrochemical impedance spectroscopy tests, and salt spray tests. The results showed that the MAO/GO/SA composite coating with a petal spherical structure had the best superhydrophobicity, and it attained a contact angle of 159.53° ± 2°. The MAO/GO/SA composite coating exhibited high resistance to corrosion, according to electrochemical and salt spray tests.
  • loading
  • [1]
    M. Yin, L.F. Hou, Z.W. Wang, et al., Self-generating construction of applicable corrosion-resistant surface structure of magnesium alloy, Corros. Sci., 184(2021), art. No. 109378. doi: 10.1016/j.corsci.2021.109378
    [2]
    M. Esmaily, J.E. Svensson, S. Fajardo, et al., Fundamentals and advances in magnesium alloy corrosion, Prog. Mater. Sci., 89(2017), p. 92. doi: 10.1016/j.pmatsci.2017.04.011
    [3]
    S.D. Wang, X.S. Ye, H.F. Zhang, et al., Superhydrophobic silane/fluorinated Attapulgite@SiO2 composite coatings on magnesium alloy for corrosion protection, ChemistrySelect, 5(2020), No. 33, p. 10329. doi: 10.1002/slct.202001802
    [4]
    Z.R. Zeng, N. Stanford, C.H.J. Davies, J.F. Nie, and N. Birbilis, Magnesium extrusion alloys: A review of developments and prospects, Int. Mater. Rev., 64(2019), No. 1, p. 27. doi: 10.1080/09506608.2017.1421439
    [5]
    L. Wu, D.N. Yang, G. Zhang, et al., Fabrication and characterization of Mg-M layered double hydroxide films on anodized magnesium alloy AZ31, Appl. Surf. Sci., 431(2018), p. 177. doi: 10.1016/j.apsusc.2017.06.244
    [6]
    S. García-Rodríguez, B. Torres, N. Pulido-González, E. Otero, and J. Rams, Corrosion behavior of 316L stainless steel coatings on ZE41 magnesium alloy in chloride environments, Surf. Coat. Technol., 378(2019), art. No. 124994. doi: 10.1016/j.surfcoat.2019.124994
    [7]
    A.S. Gnedenkov, S.L. Sinebryukhov, D.V. Mashtalyar, and S.V. Gnedenkov, Protective properties of inhibitor-containing composite coatings on a Mg alloy, Corros. Sci., 102(2016), p. 348. doi: 10.1016/j.corsci.2015.10.026
    [8]
    W. Yang, D.P. Xu, J.L. Wang, X.F. Yao, and J. Chen, Microstructure and corrosion resistance of micro arc oxidation plus electrostatic powder spraying composite coating on magnesium alloy, Corros. Sci., 136(2018), p. 174. doi: 10.1016/j.corsci.2018.03.004
    [9]
    Y. Wang, Z.Q. Huang, Q. Yan, et al., Corrosion behaviors and effects of corrosion products of plasma electrolytic oxidation coated AZ31 magnesium alloy under the salt spray corrosion test, Appl. Surf. Sci., 378(2016), p. 435. doi: 10.1016/j.apsusc.2016.04.011
    [10]
    S.V. Lamaka, B. Vaghefinazari, D. Mei, R.P. Petrauskas, D. Höche, and M.L. Zheludkevich, Comprehensive screening of Mg corrosion inhibitors, Corros. Sci., 128(2017), p. 224. doi: 10.1016/j.corsci.2017.07.011
    [11]
    Z.W Song, Z.H. Xie, G. Yu, B.N. Hu, X.M He, and X.Y. Zhang, A novel palladium-free surface activation process for electroless nickel deposition on micro-arc oxidation film of AZ91D Mg alloy, J. Alloys Compd., 623(2015), p. 274. doi: 10.1016/j.jallcom.2014.10.130
    [12]
    W. Al Zoubi and Y.G. Ko, Flowerlike organic–inorganic coating responsible for extraordinary corrosion resistance via self-assembly of an organic compound, ACS Sustainable Chem. Eng., 6(2018), No. 3, p. 3546. doi: 10.1021/acssuschemeng.7b03870
    [13]
    O.L. Li, M. Tsunakawa, Y. Shimada, K. Nakamura, K. Nishinaka, and T. Ishizaki, Corrosion resistance of composite oxide film prepared on Ca-added flame-resistant magnesium alloy AZCa612 by micro-arc oxidation, Corros. Sci., 125(2017), p. 99. doi: 10.1016/j.corsci.2017.06.008
    [14]
    X. He, R.G. Song, and D.J. Kong, Microstructure and corrosion behaviours of composite coatings on S355 offshore steel prepared by laser cladding combined with micro-arc oxidation, Appl. Surf. Sci., 497(2019), art. No. 143703. doi: 10.1016/j.apsusc.2019.143703
    [15]
    W. Shang, F. Wu, S.Q. Jiang, Y.Q. Wen, N. Peng, and J.Q. Jiang, Effect of hydrophobicity on the corrosion resistance of microarc oxidation/self-assembly/nickel composite coatings on magnesium alloys, J. Mol. Liq., 330(2021), art. No. 115606. doi: 10.1016/j.molliq.2021.115606
    [16]
    D.W. Li, H.Y. Wang, D. Luo, Y. Liu, Z.W. Han, and L.Q. Ren, Corrosion resistance controllable of biomimetic superhydrophobic microstructured magnesium alloy by controlled adhesion, Surf. Coat. Technol., 347(2018), p. 173. doi: 10.1016/j.surfcoat.2018.04.078
    [17]
    S.T. Jiang, J. Zhang, S.Z. Shun, and M.F. Chen, The formation of FHA coating on biodegradable Mg–Zn–Zr alloy using a two-step chemical treatment method, Appl. Surf. Sci., 388(2016), p. 424. doi: 10.1016/j.apsusc.2015.12.087
    [18]
    J. Kuang, Z. Ba, Z.Z. Li, Z.Z. Wang, and J. Qiu, The study on corrosion resistance of superhydrophobic coatings on magnesium, Appl. Surf. Sci., 501(2020), art. No. 144137. doi: 10.1016/j.apsusc.2019.144137
    [19]
    Y. Liu, J.Z. Xue, D. Luo, H.Y. Wang, X. Gong, Z.W. Han, and L.Q. Ren, One-step fabrication of biomimetic superhydrophobic surface by electrodeposition on magnesium alloy and its corrosion inhibition, J. Colloid Interface Sci., 491(2017), p. 313. doi: 10.1016/j.jcis.2016.12.022
    [20]
    H. Tang, T. Wu, H. Wang, X. Jian, and Y.F. Wu, Corrosion behavior of HA containing ceramic coated magnesium alloy in Hank’s solution, J. Alloys Compd., 698(2017), p. 643. doi: 10.1016/j.jallcom.2016.12.168
    [21]
    D. Jiang, H. Zhou, S. Wan, G.Y. Cai, and Z.H. Dong, Fabrication of superhydrophobic coating on magnesium alloy with improved corrosion resistance by combining micro-arc oxidation and cyclic assembly, Surf. Coat. Technol., 339(2018), p. 155. doi: 10.1016/j.surfcoat.2018.02.001
    [22]
    Z.W. Wang, Y.L. Su, Q. Li, et al., Researching a highly anti-corrosion superhydrophobic film fabricated on AZ91D magnesium alloy and its anti-bacteria adhesion effect, Mater. Charact., 99(2015), p. 200. doi: 10.1016/j.matchar.2014.12.004
    [23]
    L.B. Feng, Y.L. Zhu, J. Wang, and X.T. Shi, One-step hydrothermal process to fabricate superhydrophobic surface on magnesium alloy with enhanced corrosion resistance and self-cleaning performance, Appl. Surf. Sci., 422(2017), p. 566. doi: 10.1016/j.apsusc.2017.06.066
    [24]
    J.F. Wei, B.C. Li, L.Y. Jing, N. Tian, X. Zhao, and J.P. Zhang, Efficient protection of Mg alloy enabled by combination of a conventional anti-corrosion coating and a superamphiphobic coating, Chem. Eng. J., 390(2020), art. No. 124562. doi: 10.1016/j.cej.2020.124562
    [25]
    J.M. Zhao, X. Xie, and C. Zhang, Effect of the graphene oxide additive on the corrosion resistance of the plasma electrolytic oxidation coating of the AZ31 magnesium alloy, Corros. Sci., 114(2017), p. 146. doi: 10.1016/j.corsci.2016.11.007
    [26]
    W. Shang, F. Wu, Y.Q. Wen, C.B. He, X.Q. Zhan, and Y.Q. Li, Corrosion resistance and mechanism of graphene oxide composite coatings on magnesium alloy, Ind. Eng. Chem. Res., 58(2019), No. 3, p. 1200. doi: 10.1021/acs.iecr.8b05303
    [27]
    R.R. Hu, Y.J. He, M.R. Huang, G.K. Zhao, and H.W. Zhu, Strong adhesion of graphene oxide coating on polymer separation membranes, Langmuir, 34(2018), No. 36, p. 10569. doi: 10.1021/acs.langmuir.8b02342
    [28]
    F. Gao, Y.D. Hu, Z.H. Gong, et al., Fabrication of chitosan/heparinized graphene oxide multilayer coating to improve corrosion resistance and biocompatibility of magnesium alloys, Mater. Sci. Eng. C: Mater. Biol. Appl., 104(2019), art. No. 109947. doi: 10.1016/j.msec.2019.109947
    [29]
    Y. Zhang, J.P. Wang, Z. Zhang, et al., Silane-modified graphene oxide composite as a promising corrosion-inhibiting film for magnesium alloy AZ31, Front. Mater., 8(2021), art. No. 737792. doi: 10.3389/fmats.2021.737792
    [30]
    A.A. Nazeer, E. Al-Hetlani, M.O. Amin, T. Quiñones-Ruiz, and I.K. Lednev, A poly(butyl methacrylate)/graphene oxide/TiO2 nanocomposite coating with superior corrosion protection for AZ31 alloy in chloride solution, Chem. Eng. J., 361(2019), p. 485. doi: 10.1016/j.cej.2018.12.077
    [31]
    A.V. Talyzin, G. Mercier, A. Klechikov, et al., Brodie vs Hummers graphite oxides for preparation of multi-layered materials, Carbon, 115(2017), p. 430. doi: 10.1016/j.carbon.2016.12.097
    [32]
    H. Jie, Q.J. Xu, L. Wei, and Y.L. Min, Etching and heating treatment combined approach for superhydrophobic surface on brass substrates and the consequent corrosion resistance, Corros. Sci., 102(2016), p. 251. doi: 10.1016/j.corsci.2015.10.013
    [33]
    S.Q. Jiang, Z.Y. Zhang, D. Wang, Y.Q. Wen, N. Peng, and W. Shang, ZIF-8-based micro-arc oxidation composite coatings enhanced the corrosion resistance and superhydrophobicity of a Mg alloy, J. Magnes. Alloys, (2021). DOI: 10.1016/j.jma.2021.07.027
    [34]
    J. Yuan, R. Yuan, P. Li, D.L. Mao, and T. Feng, Fabrication and properties of the superhydrophobic ceria-based composite coating on magnesium alloy, Mater. Corros., 72(2021), No. 8, p. 1305. doi: 10.1002/maco.202112359
    [35]
    W.T. Yu, R.X. Sun, Z.Q. Guo, et al., Novel fluoridated hydroxyapatite/MAO composite coating on AZ31B magnesium alloy for biomedical application, Appl. Surf. Sci., 464(2019), p. 708. doi: 10.1016/j.apsusc.2018.09.148
    [36]
    C.Q. Wu, Q. Liu, R.R. Chen, et al., Fabrication of ZIF-8@SiO2 micro/nano hierarchical superhydrophobic surface on AZ31 magnesium alloy with impressive corrosion resistance and abrasion resistance, ACS Appl. Mater. Interfaces, 9(2017), No. 12, p. 11106. doi: 10.1021/acsami.6b16848
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(1)

    Share Article

    Article Metrics

    Article Views(751) PDF Downloads(77) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return