Cite this article as: |
Guotao Zhou, Yilin Wang, Tiangui Qi, Qiusheng Zhou, Guihua Liu, Zhihong Peng, and Xiaobin Li, Comparison of the effects of Ti- and Si-containing minerals on goethite transformation in the Bayer digestion of goethitic bauxite, Int. J. Miner. Metall. Mater., 30(2023), No. 9, pp. 1705-1715. https://doi.org/10.1007/s12613-023-2628-3 |
Yilin Wang E-mail: wang.yi.lin@outlook.com
Xiaobin Li E-mail: x.b.li@csu.edu.cn
Supplementary Information-10.1007s12613-023-2628-3.docx |
[1] |
S. Novell, Alumina production statistics reports, (2022-06-13)[2022-11-29]. https://www.world-aluminium.org/statistics/alumina-production.
|
[2] |
A.C. Scheinost, D.G. Schulze, and U. Schwertmann, Diffuse reflectance spectra of Al substituted goethite: A ligand field approach, Clays Clay Miner., 47(1999), No. 2, p. 156. doi: 10.1346/CCMN.1999.0470205
|
[3] |
F.M. Kaußen and B. Friedrich, Methods for alkaline recovery of aluminum from bauxite residue, J. Sustain. Metall., 2(2016), No. 4, p. 353. doi: 10.1007/s40831-016-0059-3
|
[4] |
A.R. Hind, S.K. Bhargava, and S.C. Grocott, The surface chemistry of Bayer process solids: A review, Colloids Surf. A, 146(1999), No. 1-3, p. 359. doi: 10.1016/S0927-7757(98)00798-5
|
[5] |
X.B. Li, L.L. Kong, T.G. Qi, Q.S. Zhou, Z.H. Peng, and G.H. Liu, Effect of alumogoethite in Bayer digestion process of high-iron gibbsitic bauxite, Chin. J. Nonferrous Met., 23(2013), No. 2, p. 543. doi: 10.1016/S1003-6326(13)62497-8
|
[6] |
G.T. Zhou, Y.L. Wang, T.G. Qi, et al., Low-temperature thermal conversion of Al-substituted goethite in gibbsitic bauxite for maximum alumina extraction, RSC Adv., 12(2022), No. 7, p. 4162. doi: 10.1039/D1RA09013E
|
[7] |
A. Suss, A. Fedyaev, N. Kuznetzova, et al., Technology solutions to increase alumina recovery from aluminogoethitic bauxites, [in] Technical Session on Light Metals 2010 held at the 139th TMS Annual Meeting, Seattle, 2010, p. 53.
|
[8] |
B.I. Whittington, The chemistry of CaO and Ca(OH)2 relating to the Bayer process, Hydrometallurgy, 43(1996), No. 1-3, p. 13. doi: 10.1016/0304-386X(96)00009-6
|
[9] |
X.L. Pan, H.Y. Yu, K.W. Dong, G.F. Tu, and S.W. Bi, Pre-desilication and digestion of gibbsitic bauxite with lime in sodium aluminate liquor, Int. J. Miner. Metall. Mater., 19(2012), No. 11, p. 973. doi: 10.1007/s12613-012-0657-4
|
[10] |
P. Smith, Reactions of lime under high temperature Bayer digestion conditions, Hydrometallurgy, 170(2017), p. 16. doi: 10.1016/j.hydromet.2016.02.011
|
[11] |
X.F. Zhu, T.A. Zhang, and G.Z.Lü, Kinetics of carbonated decomposition of hydrogarnet with different silica saturation coefficients, Int. J. Miner. Metall. Mater., 27(2020), No. 4, p. 472. doi: 10.1007/s12613-019-1913-7
|
[12] |
D. Croker, M. Loan, and B.K. Hodnett, Sodium titanate formation in high temperature Bayer digestion, [in] The 17th International Symposium of ICSOBA, Montreal, 2006, p. 154.
|
[13] |
L.L. Li, Z.G. Wu, H. Lv, F.Q. Liu, and H.L. Zhao, Reaction behavior of aluminogoethite and silica minerals in gibbsite bauxite in high-temperature digestion, J. Sustain. Metall., 8(2022), No. 1, p. 360. doi: 10.1007/s40831-022-00494-z
|
[14] |
P. Smith, The processing of high silica bauxites—–Review of existing and potential processes, Hydrometallurgy, 98(2009), No. 1-2, p. 162. doi: 10.1016/j.hydromet.2009.04.015
|
[15] |
T.C.M. Davis and J.E. Laurie, Method of Digesting Bauxite via the Bayer Process with the Addition of Reducing Agents, U.S. Patent, Appl. 4059672, 1977.
|
[16] |
L.Y. Li, A study of iron mineral transformation to reduce red mud tailings, Waste Manage., 21(2001), No. 6, p. 525. doi: 10.1016/S0956-053X(00)00107-0
|
[17] |
G.T. Zhou, Y.L. Wang, T.G. Qi, et al., Enhanced conversion mechanism of Al-goethite in gibbsitic bauxite under reductive Bayer digestion process, Trans. Nonferrous Met. Soc. China, 32(2022), No. 9, p. 3077. doi: 10.1016/S1003-6326(22)66004-7
|
[18] |
X.B. Li, Z.Y. Zhou, Y.L. Wang, et al., Enrichment and separation of iron minerals in gibbsitic bauxite residue based on reductive Bayer digestion, Trans. Nonferrous Met. Soc. China, 30(2020), No. 7, p. 1980. doi: 10.1016/S1003-6326(20)65355-9
|
[19] |
L.A. Pasechnik, V.M. Skachkov, S.A. Bibanaeva, I.S. Medyankina, and V.G. Bamburov, Composition and properties of iron oxides in the products of hydrothermal treatment of red mud and bauxites, Russ. J. Inorg. Chem., 67(2022), No. 7, p. 1101. doi: 10.1134/S0036023622060183
|
[20] |
A. Shoppert, D. Valeev, M.M. Diallo, et al., High-iron bauxite residue (red mud) valorization using hydrochemical conversion of goethite to magnetite, Materials, 15(2022), No. 23, art. No. 8423. doi: 10.3390/ma15238423
|
[21] |
G.T. Zhou, Y.L. Wang, T.G. Qi, et al., Cleaning disposal of high-iron bauxite residue using hydrothermal hydrogen reduction, Bull. Environ. Contam. Toxicol., 109(2022), No. 1, p. 163. doi: 10.1007/s00128-022-03516-4
|
[22] |
N. Brown and R.J. Tremblay, Some studies of the iron mineral transformations during high temperature digestion of Jamaica bauxite, [in] H. Forberg, ed., The Metallurgical Society of AIME, New York, 1974, p. 825.
|
[23] |
J. Murray, L. Kirwan, M. Loan, and B.K. Hodnett, In-situ synchrotron diffraction study of the hydrothermal transformation of goethite to hematite in sodium aluminate solutions, Hydrometallurgy, 95(2009), No. 3-4, p. 239. doi: 10.1016/j.hydromet.2008.06.007
|
[24] |
N.S. Mal'ts, V.I. Korneev, A.G. Suss, S.G. Sennikov, and I.B. Firfarova, Effect of the leaching conditions on the extraction of alumina from aluminogoethites, Non-Ferrous Met., 24(1983), No. 10, p. 47.
|
[25] |
F. Wu, Aluminous Goethite in the Bayer Process and its Impact on Alumina Recovery and Settling [Dissertation], Curtin University, Perth, 2012, p. 158.
|
[26] |
Y.L. Wang, X.B. Li, Q.S. Zhou, et al., Observation of sodium titanate and sodium aluminate silicate hydrate layers on diaspore particles in high-temperature Bayer digestion, Hydrometallurgy, 192(2020), art. No. 105255. doi: 10.1016/j.hydromet.2020.105255
|
[27] |
H.D. Ruan, R.L. Frost, J.T. Kloprogge, and L. Duong, Infrared spectroscopy of goethite dehydroxylation: III. FT-IR microscopy of in situ study of the thermal transformation of goethite to hematite, Spectrochim. Acta A, 58(2002), No. 5, p. 967. doi: 10.1016/S1386-1425(01)00574-1
|
[28] |
B.I. Whittington, B.L. Fletcher, and C. Talbot, The effect of reaction conditions on the composition of desilication product (DSP) formed under simulated Bayer conditions, Hydrometallurgy, 49(1998), No. 1-2, p. 1. doi: 10.1016/S0304-386X(98)00021-8
|
[29] |
Z.G. Wu, H. Lv, M.Z. Xie, L.L. Li, H.L. Zhao, and F.Q. Liu, Reaction behavior of quartz in gibbsite-boehmite bauxite in Bayer digestion and its effect on caustic consumption and alumina recovery, Ceram. Int., 48(2022), No. 13, p. 18676. doi: 10.1016/j.ceramint.2022.03.141
|
[30] |
Y.L. Wang, X.B. Li, Q.S. Zhou, et al., Effects of Si-bearing minerals on the conversion of hematite into magnetite during reductive Bayer digestion, Hydrometallurgy, 189(2019), art. No. 105126. doi: 10.1016/j.hydromet.2019.105126
|
[31] |
R.M. Cornell, R. Giovanoli, and P.W. Schindler, Effect of silicate species on the transformation of ferrihydrite into goethite and hematite in alkaline media, Clays Clay Miner., 35(1987), No. 1, p. 21. doi: 10.1346/CCMN.1987.0350103
|
[32] |
T. Hiemstra, W.H.V. Riemsdijk, and G.H. Bolt, Multisite proton adsorption modeling at the solid/solution interface of (hydr)oxides: A new approach, J. Colloid Interface Sci., 133(1989), No. 1, p. 91. doi: 10.1016/0021-9797(89)90284-1
|
[33] |
F.G. Li and X.C. Zhang, Inspection Technology for Iron Ore, Standards Press of China, Beijing, 2005, p. 392.
|
[34] |
Y.Q. Wei, A.Z. Liao, L. Wang, et al., Room temperature surface modification of ultrathin FeOOH cocatalysts on Fe2O3 photoanodes for high photoelectrochemical water splitting, J. Nanomater., 2020(2020), p. 1.
|
[35] |
F.N.I. Sari, H.S. Chen, A.K. Anbalagan, et al., V-doped, divacancy-containing β-FeOOH electrocatalyst for high performance oxygen evolution reaction, Chem. Eng. J., 438(2022), art. No. 135515. doi: 10.1016/j.cej.2022.135515
|
[36] |
Y.L. Wang, X.B. Li, B. Wang, et al., Interactions of iron and titanium-bearing minerals under high-temperature Bayer digestion conditions, Hydrometallurgy, 184(2019), p. 192. doi: 10.1016/j.hydromet.2019.01.006
|
[37] |
M. Lin, L. Tng, T. Lim, et al., Hydrothermal synthesis of octadecahedral hematite (α-Fe2O3) nanoparticles: An epitaxial growth from goethite (α-FeOOH), J. Phys. Chem. C, 118(2014), No. 20, p. 10903. doi: 10.1021/jp502087h
|
[38] |
M. Adhikari, E. Echeverria, G. Risica, D.N. McIlroy, M. Nippe, and Y. Vasquez, Synthesis of magnetite nanorods from the reduction of iron oxy-hydroxide with hydrazine, ACS Omega, 5(2020), No. 35, p. 22440. doi: 10.1021/acsomega.0c02928
|