Pejman Zamani and Zia Valefi, Comparative investigation of microstructure and high-temperature oxidation resistance of high-velocity oxy-fuel sprayed CoNiCrAlY/nano-Al2O3 composite coatings using satellited powders, Int. J. Miner. Metall. Mater., 30(2023), No. 9, pp. 1779-1791. https://doi.org/10.1007/s12613-023-2630-9
Cite this article as:
Pejman Zamani and Zia Valefi, Comparative investigation of microstructure and high-temperature oxidation resistance of high-velocity oxy-fuel sprayed CoNiCrAlY/nano-Al2O3 composite coatings using satellited powders, Int. J. Miner. Metall. Mater., 30(2023), No. 9, pp. 1779-1791. https://doi.org/10.1007/s12613-023-2630-9
Research Article

Comparative investigation of microstructure and high-temperature oxidation resistance of high-velocity oxy-fuel sprayed CoNiCrAlY/nano-Al2O3 composite coatings using satellited powders

+ Author Affiliations
  • Corresponding author:

    Pejman Zamani    E-mail: pejmanzamani33@yahoo.com

  • Received: 30 January 2023Revised: 2 March 2023Accepted: 13 March 2023Available online: 14 March 2023
  • Satellited CoNiCrAlY–Al2O3 feedstocks with 2wt%, 4wt%, and 6wt% oxide nanoparticles and pure CoNiCrAlY powder were deposited by the high-velocity oxy fuel process on an Inconel738 superalloy substrate. The oxidation test was performed at 1050°C for 5, 50, 100, 150, 200, and 400 h. The microstructure and phase composition of powders and coatings were characterized by scanning electron microscopy and X-ray diffraction, respectively. The bonding strength of the coatings was also evaluated. The results proved that with the increase in the percentage of nanoparticles (from 2wt% to 6wt%), the amount of porosity (from 1vol% to 4.7vol%), unmelted particles, and roughness of the coatings (from 4.8 to 8.8 µm) increased, and the bonding strength decreased from 71 to 48 MPa. The thicknesses of the thermally grown oxide layer of pure and composite coatings (2wt%, 4wt%, and 6wt%) after 400 h oxidation were measured as 6.5, 5.5, 7.6, and 8.1 µm, respectively. The CoNiCrAlY–2wt% Al2O3 coating showed the highest oxidation resistance due to the diffusion barrier effect of well-dispersed nanoparticles. The CoNiCrAlY–6wt% Al2O3 coating had the lowest oxidation resistance due to its rough surface morphology and porous microstructure.
  • loading
  • [1]
    J.G. Thakare, C. Pandey, M.M. Mahapatra, and R.S. Mulik, Thermal barrier coatings—A state of the art review, Met. Mater. Int., 27(2021), No. 7, p. 1947. doi: 10.1007/s12540-020-00705-w
    [2]
    A. Kalush, D. Texier, M. Ecochard, et al., Size effects on high temperature oxidation of MCrAlY coatings processed via APS and HVOF depositions, Surf. Coat. Technol., 440(2022), art. No. 128483. doi: 10.1016/j.surfcoat.2022.128483
    [3]
    S. Ajdari, F.S. Nogorani, and P.Z. Moghadam, The effect of the MCrAlY composition and aluminizing cycle upon the microstructure and hot corrosion resistance of the over-aluminized MCrAlY coating on IN738LC alloy substrate, Mater. Corros., 74(2023), No. 6, p. 846. doi: 10.1002/maco.202213496
    [4]
    F. Ghadami, A.S.R. Aghdam, and S. Ghadami, Mechanism of the oxide scale formation in thermally-sprayed NiCoCrAlY coatings modified by CeO2 nanoparticles, Mater. Today Commun., 24(2020), art. No. 101357. doi: 10.1016/j.mtcomm.2020.101357
    [5]
    P.M. Zhang, Performance of MCrAlX Coatings: Oxidation, Hot Corrosion and Interdiffusion, Linköping University Electronic Press, Linköping, 2019.
    [6]
    Y.J. Han, Z.Y. Zhu, X.Q. Li, S.G. Shen, and F.X. Ye, Effects of vacuum pre-oxidation process on thermally-grown oxides layer of CoCrAlY high temperature corrosion resistance coating, Trans. Nonferrous Met. Soc. China, 25(2015), No. 10, p. 3305. doi: 10.1016/S1003-6326(15)63991-7
    [7]
    Y. Chen, X.F. Zhao, and P. Xiao, Effect of microstructure on early oxidation of MCrAlY coatings, Acta Mater., 159(2018), p. 150. doi: 10.1016/j.actamat.2018.08.018
    [8]
    J.A. Cabral-Miramontes, C. Gaona-Tiburcio, F. Almeraya-Calderón, F.H. Estupiñan-Lopez, G.K. Pedraza-Basulto, and C.A. Poblano-Salas, Parameter studies on high-velocity oxy-fuel spraying of CoNiCrAlY coatings used in the aeronautical industry, Int. J. Corros., 2014(2014), art. No. 703806.
    [9]
    H. Vasudev, L. Thakur, H. Singh, and A. Bansal, A study on processing and hot corrosion behaviour of HVOF sprayed Inconel718-nano Al2O3 coatings, Mater. Today Commun., 25(2020), art. No. 101626. doi: 10.1016/j.mtcomm.2020.101626
    [10]
    P. Zamani, R. Ghasemi, S. Torabi, et al., Characterization and high-temperature fretting wear resistance of HVOF-sprayed Cr3C2–NiCr, CoCrWC and CoCrWNiC hardfacing coatings, J. Therm. Spray Technol., 31(2022), No. 7, p. 2157. doi: 10.1007/s11666-022-01431-y
    [11]
    T. Huang, J. Bergholz, G. Mauer, R. Vassen, D. Naumenko, and W.J. Quadakkers, Effect of test atmosphere composition on high-temperature oxidation behaviour of CoNiCrAlY coatings produced from conventional and ODS powders, Mater. High Temp., 35(2018), No. 1-3, p. 97. doi: 10.1080/09603409.2017.1389422
    [12]
    D. Toma, W. Brandl, and U. Köster, The characteristics of alumina scales formed on HVOF-sprayed MCrAlY coatings, Oxid. Met., 53(2000), No. 1, p. 125.
    [13]
    T.A. Taylor and D.F. Bettridge, Development of alloyed and dispersion-strengthened MCrAlY coatings, Surf. Coat. Technol., 86-87(1996), p. 9. doi: 10.1016/S0257-8972(96)02961-1
    [14]
    H.Y. Wang, D.W. Zuo, Y.L. Sun, F. Xu, and D. Zhang, Microstructure of nanometer Al2O3 dispersion strengthened Ni-based high-temperature protective coatings by laser cladding, Trans. Nonferrous Met. Soc. China, 19(2009), No. 3, p. 586. doi: 10.1016/S1003-6326(08)60317-9
    [15]
    J. Bergholz, B.A. Pint, K.A. Unocic, and R. Vaßen, Fabrication of oxide dispersion strengthened bond coats with low Al2O3 content, J. Therm. Spray Technol., 26(2017), No. 5, p. 868. doi: 10.1007/s11666-017-0550-9
    [16]
    H. Vasudev, L. Thakur, H. Singh, and A. Bansal, Effect of addition of Al2O3 on the high-temperature solid particle erosion behaviour of HVOF sprayed Inconel-718 coatings, Mater. Today Commun., 30(2022), art. No. 103017. doi: 10.1016/j.mtcomm.2021.103017
    [17]
    I.G. Wright, Dispersed phases in powder metallurgically-produced alloys: Contributions to high-temperature oxidation behavior, Mater. High Temp., 39(2022), No. 5, p. 387. doi: 10.1080/09603409.2022.2113709
    [18]
    K.S. Al-Hamdani, J.W. Murray, T. Hussain, A. Kennedy, and A.T. Clare, Cold sprayed metal-ceramic coatings using satellited powders, Mater. Lett., 198(2017), p. 184. doi: 10.1016/j.matlet.2017.03.175
    [19]
    M. Simonelli, N.T. Aboulkhair, P. Cohen, et al., A comparison of Ti–6Al–4V in-situ alloying in Selective Laser Melting using simply-mixed and satellited powder blend feedstocks, Mater. Charact., 143(2018), p. 118. doi: 10.1016/j.matchar.2018.05.039
    [20]
    A. Clare and A. Kennedy, Additive Manufacturing, U.S. Patent, Appl. 15/022,344, 2016.
    [21]
    H. Tan, D.P. Hao, K. Al-Hamdani, F.Y. Zhang, Z.K. Xu, and A.T. Clare, Direct metal deposition of TiB2/AlSi10Mg composites using satellited powders, Mater. Lett., 214(2018), p. 123. doi: 10.1016/j.matlet.2017.11.121
    [22]
    M.W. Bai, B. Song, L. Reddy, and T. Hussain, Preparation of MCrAlY–Al2O3 composite coatings with enhanced oxidation resistance through a novel powder manufacturing process, J. Therm. Spray Technol., 28(2019), No. 3, p. 433. doi: 10.1007/s11666-019-00830-y
    [23]
    S. Deshpande, A. Kulkarni, S. Sampath, and H. Herman, Application of image analysis for characterization of porosity in thermal spray coatings and correlation with small angle neutron scattering, Surf. Coat. Technol., 187(2004), No. 1, p. 6. doi: 10.1016/j.surfcoat.2004.01.032
    [24]
    M. Abbas, G.M. Smith, and P.R. Munroe, Microstructural investigation of bonding and melting-induced rebound of HVOF sprayed Ni particles on an aluminum substrate, Surf. Coat. Technol., 402(2020), art. No. 126353. doi: 10.1016/j.surfcoat.2020.126353
    [25]
    H.N. Xuan, L.Y. Chen, N. Li, et al., Temperature profile, microstructural evolution, and wear resistance of plasma-sprayed NiCrBSi coatings under different powers in a vertical remelting way, Mater. Chem. Phys., 292(2022), art. No. 126773. doi: 10.1016/j.matchemphys.2022.126773
    [26]
    W.M. Guo, H.L. Zhang, S. Zhao, et al., Corrosion behavior of the CoNiCrAlY–Al2O3 composite coating based on core-shell structured powder design, Materials, 14(2021), No. 22, art. No. 7093. doi: 10.3390/ma14227093
    [27]
    D. Toma, W. Brandl, and U. Köster, Studies on the transient stage of oxidation of VPS and HVOF sprayed MCrAlY coatings, Surf. Coat. Technol., 120-121(1999), p. 8. doi: 10.1016/S0257-8972(99)00332-1
    [28]
    H. Chen, M. Fan, L. Li, et al., Effects of internal oxide contents on the oxidation and β-phase depletion behaviour in HOVF CoNiCrAlY coatings, Surf. Coat. Technol., 424(2021), art. No. 127666. doi: 10.1016/j.surfcoat.2021.127666
    [29]
    P. Richer, A. Zúñiga, M. Yandouzi, and B. Jodoin, CoNiCrAlY microstructural changes induced during cold gas dynamic spraying, Surf. Coat. Technol., 203(2008), No. 3-4, p. 364. doi: 10.1016/j.surfcoat.2008.09.014
    [30]
    L.D. Zhao, M. Parco, and E. Lugscheider, Wear behaviour of Al2O3 dispersion strengthened MCrAlY coating, Surf. Coat. Technol., 184(2004), No. 2-3, p. 298. doi: 10.1016/j.surfcoat.2003.10.055
    [31]
    B.Q. Xu, L.R. Luo, J. Lu, X.F. Zhao, and P. Xiao, Effect of residual stress on the spallation of the thermally-grown oxide formed on NiCoCrAlY coating, Surf. Coat. Technol., 381(2020), art. No. 125112. doi: 10.1016/j.surfcoat.2019.125112
    [32]
    Q. Yuan, L.J. Chai, T. Yang, et al., Laser-clad FeCrAl/TiC composite coating on ferrite/martensitic steel: Significant grain refinement and wear resistance enhancement induced by adding TiC, Surf. Coat. Technol., 456(2023), art. No. 129272. doi: 10.1016/j.surfcoat.2023.129272
    [33]
    S. Saeidi, Microstructure, Oxidation and Mechanical Properties of As-sprayed and Annealed HVOF and VPS CoNiCrAlY Coatings [Dissertation], University of Nottingham, Zhejiang, 2010.
    [34]
    A. Krella, S. Tekumalla, and M. Gupta, Influence of micro Ti particles on resistance to cavitation erosion of Mg–xTi composites, Mech. Mater., 154(2021), art. No. 103705. doi: 10.1016/j.mechmat.2020.103705
    [35]
    Z.M. Goudarzi, Z. Valefi, and P. Zamani, Effect of functionally graded structure design on durability and thermal insulation capacity of plasma-sprayed thick thermal barrier coating, Ceram. Int., 47(2021), No. 24, p. 34361. doi: 10.1016/j.ceramint.2021.08.349
    [36]
    F.J. Belzunce, V. Higuera, and S. Poveda, High temperature oxidation of HFPD thermal-sprayed MCrAlY coatings, Mater. Sci. Eng. A, 297(2001), No. 1-2, p. 162. doi: 10.1016/S0921-5093(00)01239-9
    [37]
    A.C. Karaoglanli, Y. Ozgurluk, and K.M. Doleker, Comparison of microstructure and oxidation behavior of CoNiCrAlY coatings produced by APS, SSAPS, D-gun, HVOF and CGDS techniques, Vacuum, 180(2020), art. No. 109609. doi: 10.1016/j.vacuum.2020.109609
    [38]
    W. Brandl, D. Toma, J. Krüger, H.J. Grabke, and G. Matthäus, The oxidation behaviour of HVOF thermal-sprayed MCrAlY coatings, Surf. Coat. Technol., 94-95(1997), p. 21. doi: 10.1016/S0257-8972(97)00470-2
    [39]
    N. Abu-warda, A.J. López, M.D. López, and M.V. Utrilla, Ni20Cr coating on T24 steel pipes by HVOF thermal spray for high temperature protection, Surf. Coat. Technol., 381(2020), art. No. 125133. doi: 10.1016/j.surfcoat.2019.125133
    [40]
    P.M. Zhang, E. Sadeghimeresht, S.L. Chen, et al., Effects of surface finish on the initial oxidation of HVAF-sprayed NiCoCrAlY coatings, Surf. Coat. Technol., 364(2019), p. 43. doi: 10.1016/j.surfcoat.2019.02.068
    [41]
    H.E. Evans and M.P. Taylor, Oxidation of high-temperature coatings, Proc. Inst. Mech. Eng. Part G, 220(2006), No. 1, p. 1. doi: 10.1177/095441000622000101
    [42]
    F. Ghadami, A.S.R. Aghdam, A. Zakeri, B. Saeedi, and P. Tahvili, Synergistic effect of CeO2 and Al2O3 nanoparticle dispersion on the oxidation behavior of MCrAlY coatings deposited by HVOF, Ceram. Int., 46(2020), No. 4, p. 4556. doi: 10.1016/j.ceramint.2019.10.184
    [43]
    A. Zakeri, E. Bahmani, A.S.R. Aghdam, B. Saeedi, and M. Bai, A study on the effect of nano-CeO2 dispersion on the characteristics of thermally-grown oxide (TGO) formed on NiCoCrAlY powders and coatings during isothermal oxidation, J. Alloys Compd., 835(2020), art. No. 155319. doi: 10.1016/j.jallcom.2020.155319
    [44]
    L.Y. Ni, Z.L. Wu, and C.G. Zhou, Effects of surface modification on isothermal oxidation behavior of HVOF-sprayed NiCrAlY coatings, Prog. Nat. Sci., 21(2011), No. 2, p. 173. doi: 10.1016/S1002-0071(12)60052-5
    [45]
    J.R. Nicholls, Advances in coating design for high-performance gas turbines, MRS Bull., 28(2003), No. 9, p. 659. doi: 10.1557/mrs2003.194
    [46]
    F. Tang, L. Ajdelsztajn, G.E. Kim, V. Provenzano, and J.M. Schoenung, Effects of surface oxidation during HVOF processing on the primary stage oxidation of a CoNiCrAlY coating, Surf. Coat. Technol., 185(2004), No. 2-3, p. 228. doi: 10.1016/j.surfcoat.2003.11.020
    [47]
    M. Pace, Oxidation of MCrAlY Oxidation of MCrAlY superalloys [Dissertation], Loughborough University, Loughborough, Leicestershire, 2010.
    [48]
    H. Yang, X. Huang, J.S. Guo, et al., High temperature oxidation resistance of arc ion plating NiCoCrAlY coating modified via laser shock peening, J. Alloys Compd., 911(2022), art. No. 164708. doi: 10.1016/j.jallcom.2022.164708
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(3)

    Share Article

    Article Metrics

    Article Views(852) PDF Downloads(37) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return