Ran Wang, Xiu Song, Lei Wang, Yang Liu, Mitsuo Niinomi, Deliang Zhang, and Jun Cheng, New role of α phase in the fracture behavior and fracture toughness of a β-type bio-titanium alloy, Int. J. Miner. Metall. Mater., 30(2023), No. 9, pp.1756-1763. https://dx.doi.org/10.1007/s12613-023-2635-4
Cite this article as: Ran Wang, Xiu Song, Lei Wang, Yang Liu, Mitsuo Niinomi, Deliang Zhang, and Jun Cheng, New role of α phase in the fracture behavior and fracture toughness of a β-type bio-titanium alloy, Int. J. Miner. Metall. Mater., 30(2023), No. 9, pp.1756-1763. https://dx.doi.org/10.1007/s12613-023-2635-4

New role of α phase in the fracture behavior and fracture toughness of a β-type bio-titanium alloy

  • The role of α precipitates formed during aging in the fracture toughness and fracture behavior of β-type bio-titanium alloy Ti–29Nb–13Ta–4.6Zr (TNTZ) was studied. Results showed that the fracture toughness of the TNTZ alloy aged at 723 K decreases to the minimum of 72.07–73.19 kJ·m−2 when the aging time is extended to 4–8 h and then gradually increases and reaches 144.89 kJ·m−2 after 72 h. The decrease in fracture toughness within the aging time of 4–8 h is caused by the large stress concentration at the tip of acicular α precipitates with a high aspect ratio and the preferential crack propagation along the inhomogeneous acicular α precipitates distributed in “V-shape” and “nearly perpendicular shape”. When the aging time is extended to 8–72 h, the precrack tip is uniformly blunted, and the crack is effectively deflected by α precipitates with multi long axis directions, more high homogeneity, low aspect ratio, and large number density. Analysis of the effect of α precipitates on the fracture behavior suggested that the number of long axis directions of α precipitates is the key controlling factor for the fracture behavior and fracture toughness of the TNTZ alloy aged for different times.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return