Tao Wei, Qi Zhang, Sijia Wang, Mengting Wang, Ye Liu, Cheng Sun, Yanyan Zhou, Qing Huang, Xiangyun Qiu,  and Fang Tian, A gel polymer electrolyte with IL@UiO-66-NH2 as fillers for high-performance all-solid-state lithium metal batteries, Int. J. Miner. Metall. Mater., 30(2023), No. 10, pp. 1897-1905. https://doi.org/10.1007/s12613-023-2639-0
Cite this article as:
Tao Wei, Qi Zhang, Sijia Wang, Mengting Wang, Ye Liu, Cheng Sun, Yanyan Zhou, Qing Huang, Xiangyun Qiu,  and Fang Tian, A gel polymer electrolyte with IL@UiO-66-NH2 as fillers for high-performance all-solid-state lithium metal batteries, Int. J. Miner. Metall. Mater., 30(2023), No. 10, pp. 1897-1905. https://doi.org/10.1007/s12613-023-2639-0
Research Article

A gel polymer electrolyte with IL@UiO-66-NH2 as fillers for high-performance all-solid-state lithium metal batteries

+ Author Affiliations
  • Corresponding author:

    Tao Wei    E-mail: wt863@just.edu.cn

  • Received: 7 February 2023Revised: 28 March 2023Accepted: 29 March 2023Available online: 30 March 2023
  • All solid-state electrolytes have the advantages of good mechanical and thermal properties for safer energy storage, but their energy density has been limited by low ionic conductivity and large interfacial resistance caused by the poor Li+ transport kinetics due to the solid–solid contacts between the electrodes and the solid-state electrolytes. Herein, a novel gel polymer electrolyte (UPP-5) composed of ionic liquid incorporated metal-organic frameworks nanoparticles (IL@MOFs) is designed, it exhibits satisfying electrochemical performances, consisting of an excellent electrochemical stability window (5.5 V) and an improved Li+ transference number of 0.52. Moreover, the Li/UPP-5/LiFePO4 full cells present an ultra-stable cycling performance at 0.2C for over 100 cycles almost without any decay in capacities. This study might provide new insight to create an effective Li+ conductive network for the development of all-solid-state lithium-ion batteries.
  • loading
  • Supplementary Information-10.1007s12613-023-2639-0.docx
  • [1]
    M.S. Balogun, W.T. Qiu, Y. Luo, et al., A review of the development of full cell lithium-ion batteries: The impact of nanostructured anode materials, Nano Res., 9(2016), No. 10, p. 2823. doi: 10.1007/s12274-016-1171-1
    [2]
    J. Liu, Z.N. Bao, Y. Cui, et al., Pathways for practical high-energy long-cycling lithium metal batteries, Nat. Energy, 4(2019), No. 3, p. 180. doi: 10.1038/s41560-019-0338-x
    [3]
    Y. Wang, W.D. Richards, S.P. Ong, et al., Design principles for solid-state lithium superionic conductors, Nat. Mater., 14(2015), No. 10, p. 1026. doi: 10.1038/nmat4369
    [4]
    C. Yu, S. Ganapathy, E.R.H. van Eck, et al., Accessing the bottleneck in all-solid state batteries, lithium-ion transport over the solid-electrolyte-electrode interface, Nat. Commun., 8(2017), No. 1, art. No. 1086. doi: 10.1038/s41467-017-01187-y
    [5]
    Y.L. Zhao, X.Z. Yuan, L.B. Jiang, et al., Regeneration and reutilization of cathode materials from spent lithium-ion batteries, Chem. Eng. J., 383(2020), art. No. 123089. doi: 10.1016/j.cej.2019.123089
    [6]
    T. Wei, Z.H. Zhang, Z.Y. Zhu, et al., Recycling of waste plastics and scalable preparation of Si/CNF/C composite as anode material for lithium-ion batteries, Ionics, 25(2019), No. 4, p. 1523. doi: 10.1007/s11581-019-02892-y
    [7]
    J.B. Zhou, P. Chen, W. Wang, and X. Zhang, Li7P3S11 electrolyte for all-solid-state lithium-ion batteries: Structure, synthesis, and applications, Chem. Eng. J., 446(2022), art. No. 137041. doi: 10.1016/j.cej.2022.137041
    [8]
    F.Y. Wang, Y.S. Ye, Z.M. Wang, et al., MOF-derived Co3O4@rGO nanocomposites as anodes for high-performance lithium-ion batteries, Ionics, 27(2021), No. 10, p. 4197. doi: 10.1007/s11581-021-04225-4
    [9]
    T. Wei, Y.Y. Zhou, C. Sun, et al., Prestoring lithium into SnO2 coated 3D carbon fiber cloth framework as dendrite-free lithium metal anode, Particuology, 84(2024), p. 89. doi: 10.1016/j.partic.2023.03.008
    [10]
    Z.H. Chen, I. Belharouak, Y.K. Sun, and K. Amine, Titanium-based anode materials for safe lithium-ion batteries, Adv. Funct. Mater., 23(2013), No. 8, p. 959. doi: 10.1002/adfm.201200698
    [11]
    Z.H. Gao, S. Rao, T.Y. Zhang, et al., Design strategies of flame-retardant additives for lithium ion electrolyte, J. Electrochem. Energy Convers. Storage, 19(2022), No. 3, art. No. 030910. doi: 10.1115/1.4053968
    [12]
    L.P. Zhang, X.L. Li, M.R. Yang, and W.H. Chen, High-safety separators for lithium-ion batteries and sodium-ion batteries: Advances and perspective, Energy Storage Mater., 41(2021), p. 522. doi: 10.1016/j.ensm.2021.06.033
    [13]
    Z.H. Zhang, T. Wei, J.H. Lu, et al., Practical development and challenges of garnet-structured Li7La3Zr2O12 electrolytes for all-solid-state lithium-ion batteries: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1565. doi: 10.1007/s12613-020-2239-1
    [14]
    D. Zhou, D. Shanmukaraj, A. Tkacheva, M. Armand, and G.X. Wang, Polymer electrolytes for lithium-based batteries: Advances and prospects, Chem, 5(2019), No. 9, p. 2326. doi: 10.1016/j.chempr.2019.05.009
    [15]
    J.H. Lu, Z.M. Wang, Q. Zhang, et al., The effects of amino groups and open metal sites of MOFs on polymer-based electrolytes for all-solid-state lithium metal batteries, Chin. J. Chem. Eng., (2023)
    [16]
    Z.F. Ruan, Y.Z. Du, H.F. Pan, et al., Incorporation of poly(ionic liquid) with PVDF-HFP-based polymer electrolyte for all-solid-state lithium-ion batteries, Polymers, 14(2022), No. 10, art. No. 1950. doi: 10.3390/polym14101950
    [17]
    X.X. Wu, K.Y. Chen, Z.G. Yao, et al., Metal organic framework reinforced polymer electrolyte with high cation transference number to enable dendrite-free solid state Li metal conversion batteries, J. Power Sources, 501(2021), art. No. 229946. doi: 10.1016/j.jpowsour.2021.229946
    [18]
    Z.L. Xiao, T.Y. Long, L.B. Song, Y.H. Zheng, and C. Wang, Research progress of polymer-inorganic filler solid composite electrolyte for lithium-ion batteries, Ionics, 28(2022), No. 1, p. 15. doi: 10.1007/s11581-021-04340-2
    [19]
    Q.Y. Guo, F.L. Xu, L. Shen, et al., 20  μ m-thick Li6.4La3Zr1.4Ta0.6O12-based flexible solid electrolytes for all-solid-state lithium batteries, Energy Mater. Adv., 2022(2022), art. No. 9753506.
    [20]
    Z.Y. Wang, L. Shen, S.G. Deng, P. Cui, and X.Y. Yao, 10 μm-thick high-strength solid polymer electrolytes with excellent interface compatibility for flexible all-solid-state lithium-metal batteries, Adv. Mater., 33(2021), No. 25, art. No. 2100353. doi: 10.1002/adma.202100353
    [21]
    Q. Zhang, S.J. Wang, Y. Liu, et al., UiO-66-NH2 @67 core–shell metal-organic framework as fillers in solid composite electrolytes for high-performance all-solid-state lithium metal batteries, Energy Technol., 11(2023), No. 4, art. No. 2201438. doi: 10.1002/ente.202201438
    [22]
    C.W. Sun, J. Liu, Y.D. Gong, D.P. Wilkinson, and J.J. Zhang, Recent advances in all-solid-state rechargeable lithium batteries, Nano Energy, 33(2017), p. 363. doi: 10.1016/j.nanoen.2017.01.028
    [23]
    Q.Q. Zhang, K. Liu, F. Ding, and X.J. Liu, Recent advances in solid polymer electrolytes for lithium batteries, Nano Res., 10(2017), No. 12, p. 4139. doi: 10.1007/s12274-017-1763-4
    [24]
    R. Dutta and A. Kumar, Ion transport dynamics in ionic liquid incorporated CuBTC-metal-organic framework based composite polymer electrolyte, J. Mater. Sci., 30(2019), No. 2, p. 1117.
    [25]
    T. Wei, J.H. Lu, P. Zhang, et al., Metal-organic framework-derived Co3O4 modified nickel foam-based dendrite-free anode for robust lithium metal batteries, Chin. Chem. Lett., (2022), art. No. 107947.
    [26]
    T. Wei, J.H. Lu, M.T. Wang, et al., MOF-derived materials enabled lithiophilic 3D hosts for lithium metal anode—A review, Chin. J. Chem., 2023. DOI: 10.1002/cjoc.202200816
    [27]
    Q.Y. Han, S.Q. Wang, Z.Y. Jiang, X.C. Hu, and H.H. Wang, Composite polymer electrolyte incorporating metal-organic framework nanosheets with improved electrochemical stability for all-solid-state Li metal batteries, ACS Appl. Mater. Interfaces, 12(2020), No. 18, p. 20514. doi: 10.1021/acsami.0c03430
    [28]
    T. Wei, Z.H. Zhang, Q. Zhang, et al., Anion-immobilized solid composite electrolytes based on metal-organic frameworks and superacid ZrO2 fillers for high-performance all solid-state lithium metal batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1636. doi: 10.1007/s12613-021-2289-z
    [29]
    T. Wei, Z.M. Wang, M. Zhang, et al., Activated metal-organic frameworks (a-MIL-100 (Fe)) as fillers in polymer electrolyte for high-performance all-solid-state lithium metal batteries, Mater. Today Commun., 31(2022), art. No. 103518. doi: 10.1016/j.mtcomm.2022.103518
    [30]
    Z.E. Liu, Z.W. Hu, X.A. Jiang, et al., Metal-organic framework confined solvent ionic liquid enables long cycling life quasi-solid-state lithium battery in wide temperature range, Small, 18(2022), No. 37, art. No. 2203011. doi: 10.1002/smll.202203011
    [31]
    X. Tang, S.Y. Lv, K. Jiang, G.H. Zhou, and X.M. Liu, Recent development of ionic liquid-based electrolytes in lithium-ion batteries, J. Power Sources, 542(2022), art. No. 231792. doi: 10.1016/j.jpowsour.2022.231792
    [32]
    P. Xu, H.Y. Chen, X. Zhou, and H.F. Xiang, Gel polymer electrolyte based on PVDF-HFP matrix composited with rGO-PEG-NH2 for high-performance lithium ion battery, J. Membr. Sci., 617(2021), art. No. 118660. doi: 10.1016/j.memsci.2020.118660
    [33]
    T. Wei, Z.M. Wang, Q. Zhang, et al., Metal-organic framework-based solid-state electrolytes for all solid-state lithium metal batteries: A review, CrystEngComm, 24(2022), No. 28, p. 5014. doi: 10.1039/D2CE00663D
    [34]
    Z.Q. Wang, R. Tan, H.B. Wang, et al., A metal-organic-framework-based electrolyte with nanowetted interfaces for high-energy-density solid-state lithium battery, Adv. Mater., 30(2018), No. 2, art. No. 1704436. doi: 10.1002/adma.201704436
    [35]
    Y. Liu, Q.H. Zeng, P.P. Chen, et al., Modified MOF-based composite all-solid-state polymer electrolyte with improved comprehensive performance for dendrite-free Li-ion batteries, Macromol. Chem. Phys., 223(2022), No. 8, art. No. 2100325. doi: 10.1002/macp.202100325
    [36]
    J. Reiter and M. Nadherna, N-Allyl-N-methylpiperidinium bis(trifluoromethanesulfonyl)imide—A film forming ionic liquid for graphite anode of Li-ion batteries, Electrochim. Acta, 71(2012), p. 22. doi: 10.1016/j.electacta.2012.03.088
    [37]
    X.M. Gao, Q.T. Qu, G.B. Zhu, et al., Piperidinium-based ionic liquid electrolyte with linear solvent and LiODFB for LiFePO4/Li cells at room and high temperature, RSC Adv., 7(2017), No. 79, p. 50135. doi: 10.1039/C7RA10045K
    [38]
    C.B. Zhu, H. Cheng, and Y. Yang, Electrochemical characterization of two types of PEO-based polymer electrolytes with room-temperature ionic liquids, J. Electrochem. Soc., 155(2008), No. 8, art. No. A569. doi: 10.1149/1.2931523
    [39]
    R. Dutta and A. Kumar, Dielectric relaxation dynamics and AC conductivity scaling of metal-organic framework (MOF-5) based polymer electrolyte nanocomposites incorporated with ionic liquid, J. Phys. D: Appl. Phys., 50(2017), No. 42, art. No. 425302. doi: 10.1088/1361-6463/aa84ef
    [40]
    K. Fujie, K. Otsubo, R. Ikeda, T. Yamada, and H. Kitagawa, Low temperature ionic conductor: Ionic liquid incorporated within a metal-organic framework, Chem. Sci., 6(2015), No. 7, p. 4306. doi: 10.1039/C5SC01398D
    [41]
    Z.L. Hu, X.J. Zhang, and S.M. Chen, A graphene oxide and ionic liquid assisted anion-immobilized polymer electrolyte with high ionic conductivity for dendrite-free lithium metal batteries, J. Power Sources, 477(2020), art. No. 228754. doi: 10.1016/j.jpowsour.2020.228754
    [42]
    T.H. Zhou, Y. Zhao, J.W. Choi, and A. Coskun, Ionic liquid functionalized gel polymer electrolytes for stable lithium metal batteries, Angew. Chem. Int. Ed., 60(2021), No. 42, p. 22791. doi: 10.1002/anie.202106237
    [43]
    T. Wei, Z.H. Zhang, Z.M. Wang, et al., Ultrathin solid composite electrolyte based on Li6.4La3Zr1.4Ta0.6O12/PVDF-HFP/LiTFSI/succinonitrile for high-performance solid-state lithium metal batteries, ACS Appl. Energy Mater., 3(2020), No. 9, p. 9428. doi: 10.1021/acsaem.0c01872
    [44]
    Q. Zhang, T. Wei, J.H. Lu, et al., The effects of PVB additives in MOFs-based solid composite electrolytes for all-solid-state lithium metal batteries, J. Electroanal. Chem., 926(2022), art. No. 116935. doi: 10.1016/j.jelechem.2022.116935
    [45]
    N. Chen, Y. Xing, L.L. Wang, et al., “Tai Chi” philosophy driven rigid-flexible hybrid ionogel electrolyte for high-performance lithium battery, Nano Energy, 47(2018), p. 35. doi: 10.1016/j.nanoen.2018.02.036
    [46]
    Q.H. Zeng, J.A. Wang, X. Li, et al., Cross-linked chains of metal-organic framework afford continuous ion transport in solid batteries, ACS Energy Lett., 6(2021), No. 7, p. 2434. doi: 10.1021/acsenergylett.1c00583
    [47]
    J.F. Wu and X. Guo, Nanostructured metal-organic framework (MOF)-derived solid electrolytes realizing fast lithium ion transportation kinetics in solid-state batteries, Small, 15(2019), No. 27, art. No. 1902429. doi: 10.1002/smll.201902429
    [48]
    K. Wang, L.Y. Yang, Z.Q. Wang, et al., Enhanced lithium dendrite suppressing capability enabled by a solid-like electrolyte with different-sized nanoparticles, Chem. Commun., 54(2018), No. 93, p. 13060. doi: 10.1039/C8CC07476C
    [49]
    M. Liu, S. Zhang, E.R.H. van Eck, C. Wang, S. Ganapathy, and M. Wagemaker, Improving Li-ion interfacial transport in hybrid solid electrolytes, Nat. Nanotechnol., 17(2022), No. 9, p. 959. doi: 10.1038/s41565-022-01162-9
    [50]
    Z.J. Bi, N. Zhao, L.N. Ma, et al., Interface engineering on cathode side for solid garnet batteries, Chem. Eng. J., 387(2020), art. No. 124089. doi: 10.1016/j.cej.2020.124089
    [51]
    K.X. Liu, Z.Y. Wang, L.Y. Shi, S. Jungsuttiwong, and S. Yuan, Ionic liquids for high performance lithium metal batteries, J. Energy Chem., 59(2021), p. 320. doi: 10.1016/j.jechem.2020.11.017
    [52]
    D.J. Yoo, K.J. Kim, and J.W. Choi, The synergistic effect of cation and anion of an ionic liquid additive for lithium metal anodes, Adv. Energy Mater., 8(2018), No. 11, art. No. 1702744. doi: 10.1002/aenm.201702744
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Share Article

    Article Metrics

    Article Views(1609) PDF Downloads(63) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return