Na Xiao, Xu Guan, Dong Wang, Haile Yan, Minghui Cai, Nan Jia, Yudong Zhang, Claude Esling, Xiang Zhao, and Liang Zuo, Impact of W alloying on microstructure, mechanical property and corrosion resistance of face-centered cubic high entropy alloys: A review, Int. J. Miner. Metall. Mater., 30(2023), No. 9, pp. 1667-1679.
Cite this article as:
Na Xiao, Xu Guan, Dong Wang, Haile Yan, Minghui Cai, Nan Jia, Yudong Zhang, Claude Esling, Xiang Zhao, and Liang Zuo, Impact of W alloying on microstructure, mechanical property and corrosion resistance of face-centered cubic high entropy alloys: A review, Int. J. Miner. Metall. Mater., 30(2023), No. 9, pp. 1667-1679.
Invited Review

Impact of W alloying on microstructure, mechanical property and corrosion resistance of face-centered cubic high entropy alloys: A review

+ Author Affiliations
Nan Jia is an editorial board member for this journal and was not involved in the editorial review or the decision to publish this article. The authors declare no commercial conflicts of interest.
  • Corresponding authors:

    Haile Yan    E-mail:

    Nan Jia    E-mail:

  • Received: 30 September 2022Revised: 24 March 2023Accepted: 30 March 2023Available online: 1 April 2023
  • Face-centered cubic (f.c.c.) high entropy alloys (HEAs) are attracting more and more attention owing to their excellent strength and ductility synergy, irradiation resistance, etc. However, the yield strength of f.c.c. HEAs is generally low, significantly limiting their practical applications. Recently, the alloying of W has been evidenced to be able to remarkably improve the mechanical properties of f.c.c. HEAs and is becoming a hot topic in the community of HEAs. To date, when W is introduced, multiple strengthening mechanisms, including solid-solution strengthening, precipitation strengthening (μ phase, σ phase, and b.c.c. phase), and grain-refinement strengthening, have been discovered to be activated or enhanced. Apart from mechanical properties, the addition of W improves corrosion resistance as W helps to form a dense WO3 film on the alloy surface. Until now, despite the extensive studies in the literature, there is no available review paper focusing on the W doping of the f.c.c. HEAs. In that context, the effects of W doping on f.c.c. HEAs were reviewed in this work from three aspects, i.e., microstructure, mechanical property, and corrosion resistance. We expect this work can advance the application of the W alloying strategy in the f.c.c. HEAs.
  • loading
  • [1]
    P.J. Shi, R.G. Li, Y. Li, et al., Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys, Science, 373(2021), No. 6557, p. 912. doi: 10.1126/science.abf6986
    Y.P. Lu, Y. Dong, H. Jiang, et al., Promising properties and future trend of eutectic high entropy alloys, Scripta Mater., 187(2020), p. 202. doi: 10.1016/j.scriptamat.2020.06.022
    Z.F. Lei, X.J. Liu, Y. Wu, et al., Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes, Nature, 563(2018), No. 7732, p. 546. doi: 10.1038/s41586-018-0685-y
    H.L. Yan, L.D. Wang, H.X. Liu, et al., Giant elastocaloric effect and exceptional mechanical properties in an all-d-metal Ni–Mn–Ti alloy: Experimental and ab-initio studies, Mater. Des., 184(2019), art. No. 108180. doi: 10.1016/j.matdes.2019.108180
    J.H. Zhou, Y.F. Shen, and N. Jia, Strengthening mechanisms of reduced activation ferritic/martensitic steels: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 3, p. 335. doi: 10.1007/s12613-020-2121-1
    H.L. Yan, X.M. Huang, and C. Esling, Recent progress in crystallographic characterization, magnetoresponsive and elastocaloric effects of Ni–Mn–In-based heusler alloys—A review, Front. Mater., 9(2022), art. No. 812984. doi: 10.3389/fmats.2022.812984
    H.X. Liu, H.L. Yan, N. Jia, et al., Machine-learning-assisted discovery of empirical rule for inherent brittleness of full Heusler alloys, J. Mater. Sci. Technol., 131(2022), p. 1. doi: 10.1016/j.jmst.2022.05.017
    J.W. Yeh, S.K. Chen, S.J. Lin, et al., Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes, Adv. Eng. Mater., 6(2004), No. 5, p. 299. doi: 10.1002/adem.200300567
    B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A, 375-377(2004), p. 213. doi: 10.1016/j.msea.2003.10.257
    Y. Wei, Y. Fu, Z.M. Pan, et al., Influencing factors and mechanism of high-temperature oxidation of high-entropy alloys: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 6, p. 915. doi: 10.1007/s12613-021-2257-7
    Z. Shojaei, G.R. Khayati, and E. Darezereshki, Review of electrodeposition methods for the preparation of high-entropy alloys, Int. J. Miner. Metall. Mater., 29(2022), No. 9, p. 1683. doi: 10.1007/s12613-022-2439-y
    Z. Cheng, S.Z. Wang, G.L. Wu, J.H. Gao, X.S. Yang, and H.H. Wu, Tribological properties of high-entropy alloys: A review, Int. J. Miner. Metall. Mater., 29(2022), No. 3, p. 389. doi: 10.1007/s12613-021-2373-4
    Y. Zhang, T.T. Zuo, Z. Tang, et al., Microstructures and properties of high-entropy alloys, Prog. Mater. Sci., 61(2014), p. 1. doi: 10.1016/j.pmatsci.2013.10.001
    P.J. Shi, W.L. Ren, T.X. Zheng, et al., Enhanced strength–ductility synergy in ultrafine-grained eutectic high-entropy alloys by inheriting microstructural lamellae, Nat. Commun., 10(2019), art. No. 489. doi: 10.1038/s41467-019-08460-2
    T. Nagase, S. Anada, P.D. Rack, et al., Electron-irradiation-induced structural change in Zr–Hf–Nb alloy, Intermetallics, 26(2012), p. 122. doi: 10.1016/j.intermet.2012.02.015
    O.N. Senkov, G.B. Wilks, J.M. Scott, and D.B. Miracle, Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys, Intermetallics, 19(2011), No. 5, p. 698. doi: 10.1016/j.intermet.2011.01.004
    B. Cantor, Multicomponent high-entropy Cantor alloys, Prog. Mater. Sci., 120(2021), art. No. 100754. doi: 10.1016/j.pmatsci.2020.100754
    Z.W. Wang, W.J. Lu, F.C. An, et al., High stress twinning in a compositionally complex steel of very high stacking fault energy, Nat. Commun., 13(2022), No. 1, art. No. 3598. doi: 10.1038/s41467-022-31315-2
    M.Y. He, N. Jia, X.C. Liu, Y.F. Shen, and L. Zuo, Abnormal chemical composition fluctuations in multi-principal-element alloys induced by simple cyclic deformation, J. Mater. Sci. Technol., 113(2022), p. 287. doi: 10.1016/j.jmst.2021.08.075
    J.Y. He, H. Wang, H.L. Huang, et al., A precipitation-hardened high-entropy alloy with outstanding tensile properties, Acta Mater., 102(2016), p. 187. doi: 10.1016/j.actamat.2015.08.076
    N.H. Tariq, M. Naeem, B.A. Hasan, J.I. Akhter, and M. Siddique, Effect of W and Zr on structural, thermal and magnetic properties of AlCoCrCuFeNi high entropy alloy, J. Alloys Compd., 556(2013), p. 79. doi: 10.1016/j.jallcom.2012.12.095
    Y. Dong and Y.P. Lu, Effects of tungsten addition on the microstructure and mechanical properties of near-eutectic AlCoCrFeNi2 high-entropy alloy, J. Mater. Eng. Perform., 27(2018), No. 1, p. 109. doi: 10.1007/s11665-017-3096-6
    N. Malatji, T. Lengopeng, S. Pityana, and A.P.I. Popoola, Microstructural, mechanical and electrochemical properties of AlCrFeCuNiWx high entropy alloys, J. Mater. Res. Technol., 11(2021), p. 1594. doi: 10.1016/j.jmrt.2021.01.103
    D. Kumar, V.K. Sharma, Y.V.S.S. Prasad, and V. Kumar, Materials-structure-property correlation study of spark plasma sintered AlCuCrFeMnWx (x = 0, 0.05, 0.1, 0.5) high-entropy alloys, J. Mater. Res., 34(2019), No. 5, p. 767. doi: 10.1557/jmr.2019.18
    S.L. Wei and C.C. Tasan, Deformation faulting in a metastable CoCrNiW complex concentrated alloy: A case of negative intrinsic stacking fault energy? Acta Mater., 200(2020), p. 992. doi: 10.1016/j.actamat.2020.09.056
    R.B. Chang, W. Fang, X. Bai, et al., Effects of tungsten additions on the microstructure and mechanical properties of CoCrNi medium entropy alloys, J. Alloys Compd., 790(2019), p. 732. doi: 10.1016/j.jallcom.2019.03.235
    Z.G. Wu, W. Guo, K. Jin, J.D. Poplawsky, Y.F. Gao, and H.B. Bei, Enhanced strength and ductility of a tungsten-doped CoCrNi medium-entropy alloy, J. Mater. Res., 33(2018), No. 19, p. 3301. doi: 10.1557/jmr.2018.247
    Y.J. Chen, Y. Fang, X.Q. Fu, et al., Origin of strong solid solution strengthening in the CrCoNi-W medium entropy alloy, J. Mater. Sci. Technol., 73(2021), p. 101. doi: 10.1016/j.jmst.2020.08.058
    L. Zhang, X.F. Huo, A.G. Wang, et al., A ductile high entropy alloy strengthened by nano sigma phase, Intermetallics, 122(2020), art. No. 106813. doi: 10.1016/j.intermet.2020.106813
    L. Zhang, L. Zhang, H. Wang, et al., Evolution of the microstructure and mechanical properties of an sigma-hardened high-entropy alloy at different annealing temperatures, Mater. Sci. Eng. A, 831(2022), art. No. 142140. doi: 10.1016/j.msea.2021.142140
    H. Ma, Y. Shao, and C.H. Shek, CoCuFeNi high entropy alloy reinforced by in situ W particles, Mater. Sci. Eng. A, 797(2020), art. No. 140218. doi: 10.1016/j.msea.2020.140218
    H. Jiang, L. Jiang, K.M. Han, et al., Effects of tungsten on microstructure and mechanical properties of CrFeNiV0.5Wx and CrFeNi2V0.5Wx high-entropy alloys, J. Mater. Eng. Perform., 24(2015), No. 12, p. 4594. doi: 10.1007/s11665-015-1767-8
    Z.Z. Niu, J. Xu, T. Wang, N.R. Wang, Z.H. Han, and Y. Wang, Microstructure, mechanical properties and corrosion resistance of CoCrFeNiWx (x = 0, 0.2, 0.5) high entropy alloys, Intermetallics, 112(2019), art. No. 106550. doi: 10.1016/j.intermet.2019.106550
    M.G. Poletti, G. Fiore, F. Gili, D. Mangherini, and L. Battezzati, Development of a new high entropy alloy for wear resistance: FeCoCrNiW0.3 and FeCoCrNiW0.3 + 5 at.% of C, Mater. Des., 115(2017), p. 247. doi: 10.1016/j.matdes.2016.11.027
    M.H. Tsai, A.C. Fan, and H.G. Wang, Effect of atomic size difference on the type of major intermetallic phase in arc-melted CoCrFeNiX high-entropy alloys, J. Alloys Compd., 695(2017), p. 1479. doi: 10.1016/j.jallcom.2016.10.286
    L. Wang, L. Wang, Y.C. Tang, et al., Microstructure and mechanical properties of CoCrFeNiWx high entropy alloys reinforced by μ phase particles, J. Alloys Compd., 843(2020), art. No. 155997. doi: 10.1016/j.jallcom.2020.155997
    A.C. Fan, J.H. Li, and M.H. Tsai, On the phase constituents of three CoCrFeNiX (X = Cr, Mo, W) high-entropy alloys after prolonged annealing, Mater. Chem. Phys., 276(2022), art. No. 125431. doi: 10.1016/j.matchemphys.2021.125431
    V.K. Soni, S. Sanyal, and S.K. Sinha, Influence of tungsten on microstructure evolution and mechanical properties of selected novel FeCoCrMnWx high entropy alloys, Intermetallics, 132(2021), art. No. 107161. doi: 10.1016/j.intermet.2021.107161
    J.J. Yang, C.J. Liang, C.L. Wang, et al., Improving mechanical properties of (Co1.5FeNi)88.5Ti6Al4R1.5 (R = Hf, W, Nb, Ta, Mo, V) multi-component high-entropy alloys via multi-stage strain hardening strengthening, Mater. Des., 222(2022), art. No. 111061. doi: 10.1016/j.matdes.2022.111061
    W.H. Liu, Z.P. Lu, J.Y. He, et al., Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases, Acta Mater., 116(2016), p. 332. doi: 10.1016/j.actamat.2016.06.063
    J.W. Miao, T.M. Guo, J.F. Ren, A.J. Zhang, B. Su, and J.H. Meng, Optimization of mechanical and tribological properties of FCC CrCoNi multi-principal element alloy with Mo addition, Vacuum, 149(2018), p. 324. doi: 10.1016/j.vacuum.2018.01.012
    R. Fan, L.P. Wang, L.L. Zhao, et al., Synergistic effect of Nb and Mo alloying on the microstructure and mechanical properties of CoCrFeNi high entropy alloy, Mater. Sci. Eng. A, 829(2022), art. No. 142153. doi: 10.1016/j.msea.2021.142153
    W.J. Lu, X.A. Luo, Y.Q. Yang, and B. Huang, Effects of Nb additions on structure and mechanical properties evolution of CoCrNi medium-entropy alloy, Mater. Express, 9(2019), No. 4, p. 291. doi: 10.1166/mex.2019.1506
    U. Sunkari, S.R. Reddy, B.D.S. Rathod, et al., Heterogeneous precipitation mediated heterogeneous nanostructure enhances strength-ductility synergy in severely cryo-rolled and annealed CoCrFeNi2.1Nb0.2 high entropy alloy, Sci. Rep., 10(2020), No. 1, art. No. 6056. doi: 10.1038/s41598-020-63038-z
    H. Jiang, L. Li, Z.L. Ni, D.X. Qiao, Q. Zhang, and H.M. Sui, Effect of Nb on microstructure and properties of AlCoCrFeNi2.1 high entropy alloy, Mater. Chem. Phys., 290(2022), art. No. 126631. doi: 10.1016/j.matchemphys.2022.126631
    S. Huang, W. Li, O. Eriksson, and L. Vitos, Chemical ordering controlled thermo-elasticity of AlTiVCr1−xNbx high-entropy alloys, Acta Mater., 199(2020), p. 53. doi: 10.1016/j.actamat.2020.08.005
    Y. Du, X.H. Pei, Z.W. Tang, et al., Mechanical and tribological performance of CoCrNiHfx eutectic medium-entropy alloys, J. Mater. Sci. Technol., 90(2021), p. 194. doi: 10.1016/j.jmst.2021.03.023
    F. Maresca and W.A. Curtin, Mechanistic origin of high strength in refractory BCC high entropy alloys up to 1900K, Acta Mater., 182(2020), p. 235. doi: 10.1016/j.actamat.2019.10.015
    W.N. Jiao, J.W. Miao, Y.P. Lu, et al., Designing CoCrFeNi–M (M = Nb, Ta, Zr, and Hf) eutectic high-entropy alloys via a modified simple mixture method, J. Alloys Compd., 941(2023), art. No. 168975. doi: 10.1016/j.jallcom.2023.168975
    C. Ai, F. He, M. Guo, et al., Alloy design, micromechanical and macromechanical properties of CoCrFeNiTax eutectic high entropy alloys, J. Alloys Compd., 735(2018), p. 2653. doi: 10.1016/j.jallcom.2017.12.015
    C. Ai, G.X. Wang, L. Liu, et al., Effect of Ta addition on solidification characteristics of CoCrFeNiTax eutectic high entropy alloys, Intermetallics, 120(2020), art. No. 106769. doi: 10.1016/j.intermet.2020.106769
    B. Chanda, S.K. Pani, and J. Das, Mechanism of microstructure evolution and spheroidization in ultrafine lamellar CoCrFeNi(Nb0·5/Ta0.4) eutectic high entropy alloys upon hot deformation, Mater. Sci. Eng. A, 835(2022), art. No. 142669. doi: 10.1016/j.msea.2022.142669
    Y. Yang, X.Y. Luo, T.X. Ma, L.Y. Wen, L.W. Hu, and M.L. Hu, Effect of Al on characterization and properties of AlxCoCrFeNi high entropy alloy prepared via electro-deoxidization of the metal oxides and vacuum hot pressing sintering process, J. Alloys Compd., 864(2021), art. No. 158717. doi: 10.1016/j.jallcom.2021.158717
    W.R. Wang, W.L. Wang, S.C. Wang, Y.C. Tsai, C.H. Lai, and J.W. Yeh, Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys, Intermetallics, 26(2012), p. 44. doi: 10.1016/j.intermet.2012.03.005
    Z. Jiang, R. Wei, W.Z. Wang, et al., Achieving high strength and ductility in Fe50Mn25Ni10Cr15 medium entropy alloy via Al alloying, J. Mater. Sci. Technol., 100(2022), p. 20. doi: 10.1016/j.jmst.2021.04.068
    D. Kumar, O. Maulik, S. Kumar, V.K. Sharma, Y.V.S.S. Prasad, and V. Kumar, Impact of tungsten on phase evolution in nanocrystalline AlCuCrFeMnWx (x  =  0, 0.05, 0.1 and 0.5 mol) high entropy alloys, Mater. Res. Express, 4(2017), No. 11, art. No. 114004. doi: 10.1088/2053-1591/aa96df
    D. Kumar, O. Maulik, A.S. Bagri, Y.V.S.S. Prasad, and V. Kumar, Microstructure and characterization of mechanically alloyed equiatomic AlCuCrFeMnW high entropy alloy, Mater. Today, 3(2016), No. 9, p. 2926.
    D. Kumar, O. Maulik, S. Kumar, Y.V.S.S. Prasad, and V. Kumar, Phase and thermal study of equiatomic AlCuCrFeMnW high entropy alloy processed via spark plasma sintering, Mater. Chem. Phys., 210(2018), p. 71. doi: 10.1016/j.matchemphys.2017.08.049
    D. Kumar, O. Maulik, V.K. Sharma, Y.V.S.S. Prasad, and V. Kumar, Understanding the effect of tungsten on corrosion behavior of AlCuCrFeMnWx high-entropy alloys in 3.5 wt.% NaCl solution, J. Mater. Eng. Perform., 27(2018), No. 9, p. 4481. doi: 10.1007/s11665-018-3536-y
    M.Y. He, Y.F. Shen, N. Jia, and P.K. Liaw, C and N doping in high-entropy alloys: A pathway to achieve desired strength-ductility synergy, Appl. Mater. Today, 25(2021), art. No. 101162. doi: 10.1016/j.apmt.2021.101162
    L.Y. Liu, Y. Zhang, J.H. Han, et al., Nanoprecipitate-strengthened high-entropy alloys, Adv. Sci., 8(2021), No. 23, art. No. 2100870. doi: 10.1002/advs.202100870
    H. Inui, K. Kishida, L. Li, A.M. Manzoni, S. Haas, and U. Glatzel, Uniaxial mechanical properties of face-centered cubic single- and multiphase high-entropy alloys, MRS Bull., 47(2022), No. 2, p. 168. doi: 10.1557/s43577-022-00280-y
    P.A. Ibrahim, İ. Özkul, and C.A. Canbay, An overview of high-entropy alloys, Emergent Mater., 5(2022), No. 6, p. 1779. doi: 10.1007/s42247-022-00349-z
    J.J. Lian, X.G. Ma, Z.Y. Jiang, C.S. Lee, and J.W. Zhao, A review of the effect of tungsten alloying on the microstructure and properties of steels, Tungsten, (2022), p. 1.
    Y.C. Xie, H. Cheng, Q.H. Tang, W. Chen, W.K. Chen, and P.Q. Dai, Effects of N addition on microstructure and mechanical properties of CoCrFeNiMn high entropy alloy produced by mechanical alloying and vacuum hot pressing sintering, Intermetallics, 93(2018), p. 228. doi: 10.1016/j.intermet.2017.09.013
    G. Qin, R.R. Chen, H.T. Zheng, et al., Strengthening FCC-CoCrFeMnNi high entropy alloys by Mo addition, J. Mater. Sci. Technol., 35(2019), No. 4, p. 578. doi: 10.1016/j.jmst.2018.10.009
    H.W. King, Quantitative size-factors for metallic solid solutions, J. Mater. Sci., 1(1966), No. 1, p. 79. doi: 10.1007/BF00549722
    H.L. Yan, H.X. Liu, Y. Zhao, et al., Impact of B alloying on ductility and phase transition in the Ni–Mn-based magnetic shape memory alloys: Insights from first-principles calculation, J. Mater. Sci. Technol., 74(2021), p. 27. doi: 10.1016/j.jmst.2020.10.010
    H.L. Yan, Y.D. Zhang, C. Esling, X. Zhao, and L. Zuo, Determination of strain path during martensitic transformation in materials with two possible transformation orientation relationships from variant self-organization, Acta Mater., 202(2021), p. 112. doi: 10.1016/j.actamat.2020.10.054
    T.B. Massalski and U. Mizutani, Electronic structure of Hume-Rothery phases, Prog. Mater. Sci., 22(1978), No. 3-4, p. 151. doi: 10.1016/0079-6425(78)90001-4
    A. Jacob, C. Schmetterer, L. Singheiser, A. Gray-Weale, B. Hallstedt, and A. Watson, Modeling of Fe–W phase diagram using first principles and phonons calculations, Calphad, 50(2015), p. 92. doi: 10.1016/j.calphad.2015.04.010
    A.F. Sheykhlari, H. Arabi, S.M.A. Boutorabi, and C. Cayron, Effect of chromium content on microstructural evolution of CoNiAlW superalloy, Appl. Phys. A, 128(2022), No. 8, art. No. 719. doi: 10.1007/s00339-022-05768-7
    H. Okamoto, M.E. Schlesinger, and E.M. Mueller, Binary Alloy Phase Diagrams, ASM International, Cleveland, 2016.
    R.B. Chang, W. Fang, H.Y. Yu, et al., Heterogeneous banded precipitation of (CoCrNi)93Mo7 medium entropy alloys towards strength–ductility synergy utilizing compositional inhomogeneity, Scripta Mater., 172(2019), p. 144. doi: 10.1016/j.scriptamat.2019.07.026
    Z.F. He, N. Jia, H.W. Wang, H.L. Yan, and Y.F. Shen, Synergy effect of multi-strengthening mechanisms in FeMnCoCrN HEA at cryogenic temperature, J. Mater. Sci. Technol., 86(2021), p. 158. doi: 10.1016/j.jmst.2020.12.079
    Z.F. He, N. Jia, H.L. Yan, et al., Multi-heterostructure and mechanical properties of N-doped FeMnCoCr high entropy alloy, Int. J. Plast., 139(2021), art. No. 102965. doi: 10.1016/j.ijplas.2021.102965
    W.H. Liu, Y. Wu, J.Y. He, T.G. Nieh, and Z.P. Lu, Grain growth and the Hall-Petch relationship in a high-entropy FeCrNiCoMn alloy, Scripta Mater., 68(2013), No. 7, p. 526. doi: 10.1016/j.scriptamat.2012.12.002
    A. Balyanov, Corrosion resistance of ultra fine-grained Ti, Scripta Mater., 51(2004), No. 3, p. 225. doi: 10.1016/j.scriptamat.2004.04.011
    Y. Qiu, M.A. Gibson, H.L. Fraser, and N. Birbilis, Corrosion characteristics of high entropy alloys, Mater. Sci. Technol., 31(2015), No. 10, p. 1235. doi: 10.1179/1743284715Y.0000000026
  • 加载中


    通讯作者: 陈斌,
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Share Article

    Article Metrics

    Article Views(443) PDF Downloads(65) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint