Cite this article as: |
Hongbo Ju, Moussa Athmani, Jing Luan, Abbas AL-Rjoub, Albano Cavaleiro, Talha Bin Yaqub, Abdelouahad Chala, Fabio Ferreira, and Filipe Fernandes, Insights into the oxidation resistance mechanism and tribological behaviors of multilayered TiSiN/CrVxN hard coatings, Int. J. Miner. Metall. Mater., 30(2023), No. 12, pp. 2459-2468. https://doi.org/10.1007/s12613-023-2655-0 |
Hongbo Ju E-mail: hju@uc.pt
Filipe Fernandes E-mail: fid@isep.ipp.pt
Supplementary Information-10.1007s12613-023-2655-0.docx |
[1] |
H.B. Ju, R. Zhou, J. Luan, et al., Tribological performance under different environments of Ti–C–N composite films for marine wear-resistant parts, Int. J. Miner. Metall. Mater., 30(2023), No. 1, p. 144. doi: 10.1007/s12613-022-2551-z
|
[2] |
V.Kh. Alimov and J. Roth, Deuterium retention in chemically vapor deposited tungsten carbide coatings and hot-rolled tungsten exposed to low-energy deuterium plasma, Tungsten, 4(2022), No. 1, p. 10. doi: 10.1007/s42864-021-00120-7
|
[3] |
C. Wang, B.L. Ji, S.X. Gu, et al., Recent research progress on the compatibility of tritium breeders with structural materials and coatings in fusion reactors, Tungsten, 4(2022), No. 3, p. 170. doi: 10.1007/s42864-022-00160-7
|
[4] |
H.B. Ju, D. Yu, J.H. Xu, et al., Crystal structure and tribological properties of ZrAlMoN composite films deposited by magnetron sputtering, Mater. Chem. Phys., 230(2019), p. 347. doi: 10.1016/j.matchemphys.2019.03.071
|
[5] |
H.B. Ju, D. Yu, L.H. Yu, et al., The influence of Ag contents on the microstructure, mechanical and tribological properties of ZrN–Ag films, Vacuum, 148(2018), p. 54. doi: 10.1016/j.vacuum.2017.10.029
|
[6] |
H.B. Ju, D.A. Yu, J.H. Xu, et al., Microstructure, mechanical, and tribological properties of niobium vanadium carbon nitride films, J. Vac. Sci. Technol. A, 36(2018), No. 3, art. No. 031511. doi: 10.1116/1.5020954
|
[7] |
H.B. Ju, N. Ding, J.H. Xu, et al., Improvement of tribological properties of niobium nitride films via copper addition, Vacuum, 158(2018), p. 1. doi: 10.1016/j.vacuum.2018.09.037
|
[8] |
Y.C. Chim, X.Z. Ding, X.T. Zeng, and S. Zhang, Oxidation resistance of TiN, CrN, TiAlN and CrAlN coatings deposited by lateral rotating cathode arc, Thin Solid Films, 517(2009), No. 17, p. 4845. doi: 10.1016/j.tsf.2009.03.038
|
[9] |
Y.X. Xu, L. Chen, Z.Q. Liu, F. Pei, and Y. Du, Improving thermal stability of TiSiN nanocomposite coatings by multilayered epitaxial growth, Surf. Coat. Technol., 321(2017), p. 180. doi: 10.1016/j.surfcoat.2017.04.057
|
[10] |
W.H. Zhang and J.H. Hsieh, Tribological behavior of TiN and CrN coatings sliding against an epoxy molding compound, Surf. Coat. Technol., 130(2000), No. 2-3, p. 240. doi: 10.1016/S0257-8972(00)00709-X
|
[11] |
I. Milošev, H.H. Strehblow, and B. Navinšek, XPS in the study of high-temperature oxidation of CrN and TiN hard coatings, Surf. Coat. Technol., 74-75(1995), p. 897. doi: 10.1016/0257-8972(95)08360-X
|
[12] |
M.A. Djouadi, C. Nouveau, O. Banakh, R. Sanjinés, F. Lévy, and G. Nouet, Stress profiles and thermal stability of CrxNy films deposited by magnetron sputtering, Surf. Coat. Technol., 151-152(2002), p. 510. doi: 10.1016/S0257-8972(01)01635-8
|
[13] |
C.K. Liu, H.B. Ju, P.X. Han, et al., The influence of carbon content on the microstructure, mechanical and frictional property of chromium carbon nitride composite films, Vacuum, 178(2020), art. No. 109368. doi: 10.1016/j.vacuum.2020.109368
|
[14] |
L.Q. He, L. Chen, Y.X. Xu, and Y. Du, Thermal stability and oxidation resistance of Cr1–xAlxN coatings with single phase cubic structure, J. Vac. Sci. Technol. A, 33(2015), No. 6, art. No. 061513. doi: 10.1116/1.4930424
|
[15] |
D.B. Lee, Y.C. Lee, and S.C. Kwon, High temperature oxidation of a CrN coating deposited on a steel substrate by ion plating, Surf. Coat. Technol., 141(2001), No. 2-3, p. 227. doi: 10.1016/S0257-8972(01)01238-5
|
[16] |
F.H. Lu, H.Y. Chen, and C.H. Hung, Degradation of CrN films at high temperature under controlled atmosphere, J. Vac. Sci. Technol. A, 21(2003), No. 3, p. 671. doi: 10.1116/1.1566784
|
[17] |
A.E. Reiter, C. Mitterer, and B. Sartory, Oxidation of arc-evaporated Al1–xCrxN coatings, J. Vac. Sci. Technol. A, 25(2007), No. 4, p. 711. doi: 10.1116/1.2738492
|
[18] |
Z.B. Qi, B. Liu, Z.T. Wu, F.P. Zhu, Z.C. Wang, and C.H. Wu, A comparative study of the oxidation behavior of Cr2N and CrN coatings, Thin Solid Films, 544(2013), p. 515. doi: 10.1016/j.tsf.2013.01.031
|
[19] |
H.B. Ju, R. Wang, N. Ding, et al., Improvement on the oxidation resistance and tribological properties of molybdenum disulfide film by doping nitrogen, Mater. Des., 186(2020), art. No. 108300. doi: 10.1016/j.matdes.2019.108300
|
[20] |
H.B. Ju, R. Zhou, J. Luan, et al., Multilayer Mo2N-Ag/SiNx films for demanding applications: Morphology, structure and temperature-cycling tribological properties, Mater. Des., 223(2022), art. No. 111128. doi: 10.1016/j.matdes.2022.111128
|
[21] |
C.K. Liu, H.B. Ju, J.H. Xu, et al., Influence of copper on the compositions, microstructure and room and elevated temperature tribological properties of the molybdenum nitride film, Surf. Coat. Technol., 395(2020), art. No. 125811. doi: 10.1016/j.surfcoat.2020.125811
|
[22] |
H.B. Ju, R. Zhou, S.J. Liu, L.H. Yu, J.H. Xu, and Y.X. Geng, Enhancement of the tribological behavior of self-lubricating nanocomposite Mo2N/Cu films by adding the amorphous SiNx, Surf. Coat. Technol., 423(2021), art. No. 127565. doi: 10.1016/j.surfcoat.2021.127565
|
[23] |
H.B. Ju, R. Wang, W.X. Wang, J.H. Xu, L.H. Yu, and H. Luo, The microstructure and tribological properties of molybdenum and silicon nitride composite films, Surf. Coat. Technol., 401(2020), art. No. 126238. doi: 10.1016/j.surfcoat.2020.126238
|
[24] |
Y.W. Lin, J.H. Huang, W.J. Cheng, and G.P. Yu, Effect of Ti interlayer on mechanical properties of TiZrN coatings on D2 steel, Surf. Coat. Technol., 350(2018), p. 745. doi: 10.1016/j.surfcoat.2018.04.077
|
[25] |
A. AL-Rjoub, L. Rebouta, N.F. Cunha, F. Fernandes, N.P. Barradas, and E. Alves, W/AlSiTiNx/SiAlTiOyNx/SiAlOx multilayered solar thermal selective absorber coating, Sol. Energy, 207(2020), p. 192. doi: 10.1016/j.solener.2020.06.094
|
[26] |
F. Vaz, L. Rebouta, P. Goudeau, et al., Characterisation of Ti1−xSixNy nanocomposite films, Surf. Coat. Technol., 133-134(2000), p. 307. doi: 10.1016/S0257-8972(00)00947-6
|
[27] |
H.B. Ju, L.Y. Xu, J. Luan, et al., Enhancement on the hardness and oxidation resistance property of TiN/Ag composite films for high temperature applications by addition of Si, Vacuum, 209(2023), art. No. 111752. doi: 10.1016/j.vacuum.2022.111752
|
[28] |
M. Diserens, J. Patscheider, and F. Lévy, Mechanical properties and oxidation resistance of nanocomposite TiN–SiNx physical-vapor-deposited thin films, Surf. Coat. Technol., 120-121(1999), p. 158. doi: 10.1016/S0257-8972(99)00481-8
|
[29] |
J.B. Choi, K. Cho, M.H. Lee, and K.H. Kim, Effects of Si content and free Si on oxidation behavior of Ti–Si–N coating layers, Thin Solid Films, 447-448(2004), p. 365. doi: 10.1016/S0040-6090(03)01083-6
|
[30] |
L.C. Chang, M.C. Sung, Y.I. Chen, and C.H. Tseng, Mechanical properties and oxidation behavior of CrWSiN films, Surf. Coat. Technol., 437(2022), art. No. 128368. doi: 10.1016/j.surfcoat.2022.128368
|
[31] |
L. Aissani, M. Fellah, and C. Nouveau, Structural mechanical and tribological behavior of reactive sputtered Cr–N and Cr–V–N films, Diffusion Found., 18(2018), p. 27. doi: 10.4028/www.scientific.net/DF.18.27
|
[32] |
B.B. Xu, P. Guo, Z.Y. Wang, et al., Anti-wear Cr–V–N coating via V solid solution: Microstructure, mechanical and tribological properties, Surf. Coat. Technol., 397(2020), art. No. 126048. doi: 10.1016/j.surfcoat.2020.126048
|
[33] |
Y.X. Qiu, S. Zhang, B. Li, et al., Improvement of tribological performance of CrN coating via multilayering with VN, Surf. Coat. Technol., 231(2013), p. 357. doi: 10.1016/j.surfcoat.2012.03.010
|
[34] |
F.X. Fu, S.W. Han, and Z. Chen, Influence of cathode current on corrosion resistance and tribological properties of TiAlN/TiVN hard coatings, Ferroelectrics, 549(2019), No. 1, p. 227. doi: 10.1080/00150193.2019.1592565
|
[35] |
F. Fernandes, A. Loureiro, T. Polcar, and A. Cavaleiro, The effect of increasing V content on the structure, mechanical properties and oxidation resistance of Ti–Si–V–N films deposited by DC reactive magnetron sputtering, Appl. Surf. Sci., 289(2014), p. 114. doi: 10.1016/j.apsusc.2013.10.117
|
[36] |
D.B. Lewis, S. Creasey, Z. Zhou, et al., The effect of (Ti+Al): V ratio on the structure and oxidation behaviour of TiAlN/VN nano-scale multilayer coatings, Surf. Coat. Technol., 177-178(2004), p. 252. doi: 10.1016/j.surfcoat.2003.09.041
|
[37] |
A. Al-Rjoub, A. Cavaleiro, and F. Fernandes, Structure, morphology, thermal stability and oxidation resistance of multilayered TiSiN/VN films: Influence of TiSiN-layer thickness, J. Mater. Eng. Perform., 30(2021), No. 6, p. 3934. doi: 10.1007/s11665-021-05560-3
|
[38] |
M. Athmani, A. AL-Rjoub, D. Cavaleiro, A. Chala, A. Cavaleiro, and F. Fernandes, Microstructural, mechanical, thermal stability and oxidation behavior of TiSiN/CrVxN multilayer coatings deposited by D.C. reactive magnetron sputtering, Surf. Coat. Technol., 405(2021), art. No. 126593. doi: 10.1016/j.surfcoat.2020.126593
|
[39] |
H.B. Ju, N. Ding, J.H. Xu, et al., The influence of crystal structure and the enhancement of mechanical and frictional properties of titanium nitride film by addition of ruthenium, Appl. Surf. Sci., 489(2019), p. 247. doi: 10.1016/j.apsusc.2019.05.251
|
[40] |
T. Kacsich, S. Gasser, Y. Tsuji, A. Dommann, and M.A. Nicolet, Wet oxidation of Ti34Si23N43, J. Appl. Phys., 85(1999), No. 3, p. 1871. doi: 10.1063/1.369342
|
[41] |
T. Kacsich and M.A. Nicolet, Moving species in Ti34Si23N43 oxidation, Thin Solid Films, 349(1999), No. 1-2, p. 1. doi: 10.1016/S0040-6090(99)00178-9
|
[42] |
M. Danek, F. Fernandes, A. Cavaleiro, and T. Polcar, Influence of Cr additions on the structure and oxidation resistance of multilayered TiAlCrN films, Surf. Coat. Technol., 313(2017), p. 158. doi: 10.1016/j.surfcoat.2017.01.053
|
[43] |
T. Takahashi, Y. Minamino, H. Hirasawa, and T. Ouchi, High-temperature oxidation and its kinetics study of Ti–Al and Ti–V alloys in air, Mater. Trans., 55(2014), No. 2, p. 290. doi: 10.2320/matertrans.L-M2013840
|
[44] |
R. Zhou, H.B. Ju, S.J. Liu, et al., The influences of Ag content on the friction and wear properties of TiCN–Ag films, Vacuum, 196(2022), art. No. 110719. doi: 10.1016/j.vacuum.2021.110719
|
[45] |
S. Yang, Y. Chang, D. Lin, D. Wang, and W. Wu, Mechanical and tribological properties of multilayered TiSiN/CrN coatings synthesized by a cathodic arc deposition process, Surf. Coat. Technol., 202(2008), p. 2176. doi: 10.1016/j.surfcoat.2007.09.004
|
[46] |
P.H. Mayrhofer, P.E. Hovsepian, C. Mitterer, and W.D. Münz, Calorimetric evidence for frictional self-adaptation of TiAlN/VN superlattice coatings, Surf. Coat. Technol., 177-178(2004), p. 341. doi: 10.1016/j.surfcoat.2003.09.024
|
[47] |
Y.X. Qiu, B. Li, J.W. Lee, and D.L. Zhao, Self-lubricating CrVN coating strengthened via multilayering with VN, J. Iron Steel Res. Int., 21(2014), No. 5, p. 545. doi: 10.1016/S1006-706X(14)60085-6
|
[48] |
L. Rapoport, A. Moshkovich, V. Perfilyev, et al., High temperature friction behavior of CrVxN coatings, Surf. Coat. Technol., 238(2014), p. 207. doi: 10.1016/j.surfcoat.2013.10.076
|
[49] |
L. Aissani, M. Fellah, L. Radjehi, C. Nouveau, A. Montagne, and A. Alhussein, Effect of annealing treatment on the microstructure, mechanical and tribological properties of chromium carbonitride coatings, Surf. Coat. Technol., 359(2019), p. 403. doi: 10.1016/j.surfcoat.2018.12.099
|
[50] |
H.B. Ju, N. Ding, J.H. Xu, L.H. Yu, Y.X. Geng, and F. Ahmed, The tribological behavior of niobium nitride and silver composite films at elevated testing temperatures, Mater. Chem. Phys., 237(2019), art. No. 121840. doi: 10.1016/j.matchemphys.2019.121840
|
[51] |
H.B. Ju, K.H. Huang, J. Luan, Y.X. Geng, J.F. Yang, and J.H. Xu. Evaluation under temperature cycling of the tribological properties of the Ag-SiNx films for green tribological applications, Ceram. Int., 49(2023), No. 18, p. 30115. doi: 10.1016/j.ceramint.2023.06.267
|