Yumeng Li, Qing Zhao, Xiaohui Mei, Chengjun Liu, Henrik Saxén,  and Ron Zevenhoven, Effect of Ca/Mg molar ratio on the calcium-based sorbents, Int. J. Miner. Metall. Mater., 30(2023), No. 11, pp. 2182-2190. https://doi.org/10.1007/s12613-023-2657-y
Cite this article as:
Yumeng Li, Qing Zhao, Xiaohui Mei, Chengjun Liu, Henrik Saxén,  and Ron Zevenhoven, Effect of Ca/Mg molar ratio on the calcium-based sorbents, Int. J. Miner. Metall. Mater., 30(2023), No. 11, pp. 2182-2190. https://doi.org/10.1007/s12613-023-2657-y
Research Article

Effect of Ca/Mg molar ratio on the calcium-based sorbents

+ Author Affiliations
  • Corresponding author:

    Qing Zhao    E-mail: zhaoq@smm.neu.edu.cn

  • Received: 15 February 2023Revised: 7 April 2023Accepted: 18 April 2023Available online: 19 April 2023
  • Steelmaking industry faces urgent demands for both steel slag utilization and CO2 abatement. Ca and Mg of steel slag can be extracted by acid solution and used to prepare sorbents for CO2 capture. In this work, the calcium-based sorbents were prepared from stainless steel slag leachate by co-precipitation, and the initial CO2 chemisorption capacity of the calcium-based sorbent prepared from steel slag with the Ca and Mg molar ratio of 3.64:1 was 0.40 g/g. Moreover, the effect of Ca/Mg molar ratio on the morphology, structure, and CO2 chemisorption capacity of the calcium-based sorbents were investigated. The results show that the optimal Ca/Mg molar ratio of sorbent for CO2 capture was 4.2:1, and the skeleton support effect of MgO in calcium-based sorbents was determined. Meanwhile, the chemisorption kinetics of the sorbents was studied using the Avrami-Erofeev model. There were two processes of CO2 chemisorption, and the activation energy of the first stage (reaction control) was found to be lower than that of the second stage (diffusion control).
  • loading
  • Supplementary Information-10.1007s12613-023-2657-y.doc
  • [1]
    J. Su, Y.B. Liang, L. Ding, G.S. Zhang, and H. Liu, Research on China’s energy development strategy under carbon neutrality, Bull. Chin. Acad. Sci., 36(2021), No. 9, p. 1001. doi: 10.16418/j.issn.1000-3045.20210727001
    [2]
    W.L. Dong, G.H. Ding, A.J. Xu, et al., Development of CO2 capture and utilization technology in steelmaking plant, Iron Steel Res. Int., (2023). DOI: 10.1007/s42243-023-00927-3
    [3]
    H.X. Zhang, W.Q. Sun, W.D. Li, and G.Y. Ma, A carbon flow tracing and carbon accounting method for exploring CO2 emissions of the iron and steel industry: An integrated material–energy–carbon hub, Appl. Energy, 309(2022), art. No. 118485. doi: 10.1016/j.apenergy.2021.118485
    [4]
    L.Y. Liu, H.G. Ji, X.F. Lü, et al., Mitigation of greenhouse gases released from mining activities: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 513. doi: 10.1007/s12613-020-2155-4
    [5]
    J.L. Guo, Y.P. Bao, and M. Wang, Steel slag in China: Treatment, recycling, and management, Waste Manage., 78(2018), p. 318. doi: 10.1016/j.wasman.2018.04.045
    [6]
    H. Matsuura, X. Yang, G. Li, Z. Yuan, and F. Tsukihashi, Recycling of ironmaking and steelmaking slags in Japan and China, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 739. doi: 10.1007/s12613-021-2400-5
    [7]
    Z.F. Cui, A.J. Xu, and F.Q. Shang Guan, Low-carbon development strategy analysis of the domestic and foreign steel industry, Chin. J. Eng., 44(2022), No. 9, p. 1496.
    [8]
    A.J. Nathanael, K. Kannaiyan, A.K. Kunhiraman, S. Ramakrishna, and V. Kumaravel, Global opportunities and challenges on net-zero CO2 emissions towards a sustainable future, React. Chem. Eng., 6(2021), No. 12, p. 2226. doi: 10.1039/D1RE00233C
    [9]
    W.Q. Liu, N.W.L. Low, B. Feng, G. Wang, and J.C. Diniz da Costa, Calcium precursors for the production of CaO sorbents for multicycle CO2 capture, Environ. Sci. Technol., 44(2010), No. 2, p. 841. doi: 10.1021/es902426n
    [10]
    T. Witoon, Characterization of calcium oxide derived from waste eggshell and its application as CO2 sorbent, Ceram. Int., 37(2011), No. 8, p. 3291. doi: 10.1016/j.ceramint.2011.05.125
    [11]
    Y.J. Li, R.Y. Sun, C.T. Liu, H.L. Liu, and C.M. Lu, CO2 capture by carbide slag from chlor-alkali plant in calcination/carbonation cycles, Int. J. Greenhouse Gas Control, 9(2012), p. 117. doi: 10.1016/j.ijggc.2012.03.012
    [12]
    Y.J. Li, R.Y. Sun, H.L. Liu, and C.M. Lu, Reactivation properties of carbide slag as a CO2 sorbent during calcination/carbonation cycles, [in] H.Y. Qi and B. Zhao, eds., Cleaner Combustion and Sustainable World, Berlin, 2013, p. 1233.
    [13]
    S.C. Tian, J.G. Jiang, F. Yan, K.M. Li, and X.J. Chen, Synthesis of highly efficient CaO-based, self-stabilizing CO2 sorbents via structure-reforming of steel slag, Environ. Sci. Technol., 49(2015), No. 12, p. 7464. doi: 10.1021/acs.est.5b00244
    [14]
    S.C. Tian, J.G. Jiang, F. Yan, K.M. Li, X.J. Chen, and V. Manovic, Highly efficient CO2 capture with simultaneous iron and CaO recycling for the iron and steel industry, Green Chem., 18(2016), No. 14, p. 4022. doi: 10.1039/C6GC00400H
    [15]
    M. Broda, A.M. Kierzkowska, and C.R. Müller, Application of the sol–gel technique to develop synthetic calcium-based sorbents with excellent carbon dioxide capture characteristics, ChemSusChem, 5(2012), No. 2, p. 411. doi: 10.1002/cssc.201100468
    [16]
    D. Karami and N. Mahinpey, Highly active CaO-based sorbents for CO2 capture using the precipitation method: Preparation and characterization of the sorbent powder, Ind. Eng. Chem. Res., 51(2012), No. 12, p. 4567. doi: 10.1021/ie2024257
    [17]
    H.C. Chen, C.S. Zhao, Y.J. Li, and X.P. Chen, CO2 capture performance of calcium-based sorbents in a pressurized carbonation/calcination loop, Energy Fuels, 24(2010), No. 10, p. 5751. doi: 10.1021/ef100565d
    [18]
    M. Erans, V. Manovic, and E.J. Anthony, Calcium looping sorbents for CO2 capture, Appl. Energy, 180(2016), p. 722. doi: 10.1016/j.apenergy.2016.07.074
    [19]
    J. Miranda-Pizarro, A. Perejón, J.M. Valverde, P.E. Sánchez-Jiménez, and L.A. Pérez-Maqueda, Use of steel slag for CO2 capture under realistic calcium-looping conditions, RSC Adv., 6(2016), No. 44, p. 37656. doi: 10.1039/C6RA03210A
    [20]
    X.Y. Yan, Y.J. Li, J.L. Zhao, and Z.Y. Wang, Density functional theory study on CO2 adsorption by Ce-promoted CaO in the presence of steam, Energy Fuels, 34(2020), No. 5, p. 6197. doi: 10.1021/acs.energyfuels.0c00972
    [21]
    L.Y. Li, D.L. King, Z.M. Nie, and C. Howard, Magnesia-stabilized calcium oxide absorbents with improved durability for high temperature CO2 capture, Ind. Eng. Chem. Res., 48(2009), No. 23, p. 10604. doi: 10.1021/ie901166b
    [22]
    S. Rodiah, M. Huljana, J.L. Al Jabbar, C. Ichsan, and H. Marzuki, Silica-rice husk as adsorbent of Cr (VI) ions prepared through sol–gel method, Walisongo J. Chem., 4(2021), No. 1, p. 65. doi: 10.21580/wjc.v4i1.8045
    [23]
    Q. Zhao, C.J. Liu, L.H. Cao, X. Zheng, and M.F. Jiang, Effect of lime on stability of chromium in stainless steel slag, Minerals, 8(2018), No. 10, art. No. 424. doi: 10.3390/min8100424
    [24]
    Q. Zhao, C.J. Liu, L.H. Cao, X. Zheng, and M.F. Jiang, Stability of chromium in stainless steel slag during cooling, Minerals, 8(2018), No. 10, art. No. 445. doi: 10.3390/min8100445
    [25]
    Q. Zhao, C.J. Liu, T.C. Gao, L. Gao, H. Saxén, and R. Zevenhoven, Remediation of stainless steel slag with MnO for CO2 mineralization, Process. Saf. Environ. Prot., 127(2019), p. 1. doi: 10.1016/j.psep.2019.04.025
    [26]
    Q. Zhao, J.Y. Li, K.W. You, and C.J. Liu, Recovery of calcium and magnesium bearing phases from iron- and steelmaking slag for CO2 sequestration, Process. Saf. Environ. Prot., 135(2020), p. 81. doi: 10.1016/j.psep.2019.12.012
    [27]
    Q. Zhao, K. Liu, L.F. Sun, et al., Towards carbon sequestration using stainless steel slag via phase modification and co-extraction of calcium and magnesium, Process. Saf. Environ. Prot., 133(2020), p. 73. doi: 10.1016/j.psep.2019.11.004
    [28]
    L.H. Cao, C.J. Liu, Q. Zhao, and M.F. Jiang, Effect of Al2O3 modification on enrichment and stabilization of chromium in stainless steel slag, J. Iron Steel Res. Int., 24(2017), No. 3, p. 258. doi: 10.1016/S1006-706X(17)30038-9
    [29]
    D.D. Fang, L.H. Zhang, L.J. Zou, and F. Duan, Effect of leaching parameters on the composition of adsorbents derived from steel slag and their CO2 capture characteristics, Greenhouse Gases: Sci. Technol., 11(2021), No. 5, p. 924. doi: 10.1002/ghg.2103
    [30]
    S.F. Wu, Q.H. Li, J.N. Kim, and K. B. Yi, Properties of a nano CaO/Al2O3 CO2 sorbent, Ind. Eng. Chem. res., 47(2008), No. 1, p. 180. doi: 10.1021/ie0704748
    [31]
    M. Broda, A.M. Kierzkowska, and R.C. Muller. Development of highly effective CaO-based, MgO-stabilized CO2 sorbents via a scalable “one-pot” recrystallization technique, Adv. Funct. Mater., 24(2014), No. 36, p. 5753. doi: 10.1002/adfm.201400862
    [32]
    P.Q. Lan and S.F. Wu, Synthesis of a porous nano-CaO/MgO-based CO2 adsorbent, Chem. Eng. Technol., 37(2014), No. 4, p. 580. doi: 10.1002/ceat.201300709
    [33]
    W.Q. Liu, B. Feng, Y.Q. Wu, G.X. Wang, J. Barry, and J.C. Diniz da Costa, Synthesis of sintering-resistant sorbents for CO2 capture, Environ. Sci. Technol., 44(2010), No. 8, p. 3093. doi: 10.1021/es903436v
    [34]
    C. Luo, Y. Zheng, Q.L. Wu, N. Ding, and C. Zheng, Cyclic reaction characters of novel CaO/MgO high temperature CO2 sorbents, J. Eng. Thermophys., 32(2011), No. 11, p. 1957.
    [35]
    M.A. Naeem, A. Armutlulu, Q. Imtiaz, et al., Optimization of the structural characteristics of CaO and its effective stabilization yield high-capacity CO2 sorbents, Nat. Commun., 9(2018), art. No. 2408. doi: 10.1038/s41467-018-04794-5
    [36]
    X.H. Mei, Q. Zhao, Y. Min, C.J. Liu, H. Saxén, and R. Zevenhoven, Phase transition and dissolution behavior of Ca/Mg-bearing silicates of steel slag in acidic solutions for integration with carbon sequestration, Process. Saf. Environ. Prot., 159(2022), p. 221. doi: 10.1016/j.psep.2021.12.062
    [37]
    X.H. Mei, Q. Zhao, J.Y. Zhou, et al., Phase transition of Ca- and Mg-bearing minerals of steel slag in acidic solution for CO2 sequestration, J. Sustain. Metall., 7(2021), No. 2, p. 391. doi: 10.1007/s40831-021-00374-y
    [38]
    X.H. Mei, Q. Zhao, Y.M. Li, et al., Phase transition and morphology evolution of precipitated calcium carbonate (PCC) in the CO2 mineralization process, Fuel, 328(2022), art. No. 125259. doi: 10.1016/j.fuel.2022.125259
    [39]
    R.J. Ferretti and W.M. Hoffman, Determination of calcium and magnesium in mixed fertilizers by EDTA titration, J. Assoc. Off. Agric. Chem., 45(1962), No. 1, p. 22. doi: doi.org/10.1093/jaoac/45.1.22
    [40]
    C. Luo, Y. Zheng, N. Ding, Q.L. Wu, and C. Zheng, Synthesis and performance of a nano synthetic Ca-based sorbent for high temperature CO2 capture, Proc. CESS, 31(2011), No. 8, p. 45.
    [41]
    H.T. Jang, Y. Park, Y.S. Ko, J.Y. Lee, and B. Margandan, Highly siliceous MCM-48 from rice husk ash for CO2 adsorption, Int. J. Greenhouse Gas Control, 3(2009), No. 5, p. 545. doi: 10.1016/j.ijggc.2009.02.008
    [42]
    W.T. Zeng and H. Bai, Swelling-agent-free synthesis of rice husk derived silica materials with large mesopores for efficient CO2 capture, Chem. Eng. J., 251(2014), p. 1. doi: 10.1016/j.cej.2014.04.041
    [43]
    B. Khoshandam, R.V. Kumar, and L. Allahgholi, Mathematical modeling of CO2 removal using carbonation with CaO: The grain model, Korean J. Chem. Eng., 27(2010), No. 3, p. 766. doi: 10.1007/s11814-010-0119-5
    [44]
    C.Q. Hu, T. Han, Y.Z. Zhang, and Z.X. Zhang, Theoretical foundation of carbonation pellet process for ferrous sludge recycling, J. Iron Steel Res. Int., 18(2011), No. 12, p. 27. doi: 10.1016/S1006-706X(12)60005-3
    [45]
    P.J. Barrie, The mathematical origins of the kinetic compensation effect: 1. the effect of random experimental errors, Phys. Chem. Chem. Phys., 14(2012), No. 1, p. 318. doi: 10.1039/C1CP22666E
    [46]
    P.J. Barrie, The mathematical origins of the kinetic compensation effect: 2. the effect of systematic errors, Phys. Chem. Chem. Phys., 14(2012), No. 1, p. 327. doi: 10.1039/C1CP22667C
    [47]
    V. Manovic and E.J. Anthony, Thermal activation of CaO-based sorbent and self-reactivation during CO2 capture looping cycles, Environ. Sci. Technol., 42(2008), No. 11, p. 4170. doi: 10.1021/es800152s
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(5)

    Share Article

    Article Metrics

    Article Views(703) PDF Downloads(57) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return