Min Zhou, Laijun Liang, Dingze Lu, Xiaomei Lu, Zheng Wang, Fengzhen Huang, Pengfei Cheng, Dongdong Liu, Mengqi Tian, Qiuping Wang, and Yunjie Zhang, Synergically enhanced piezocatalysis performance of eco-friendly (K0.52Na0.48)NbO3 through ferroelectric polarization and defects, Int. J. Miner. Metall. Mater., 30(2023), No. 10, pp.2044-2054. https://dx.doi.org/10.1007/s12613-023-2671-0
Cite this article as: Min Zhou, Laijun Liang, Dingze Lu, Xiaomei Lu, Zheng Wang, Fengzhen Huang, Pengfei Cheng, Dongdong Liu, Mengqi Tian, Qiuping Wang, and Yunjie Zhang, Synergically enhanced piezocatalysis performance of eco-friendly (K0.52Na0.48)NbO3 through ferroelectric polarization and defects, Int. J. Miner. Metall. Mater., 30(2023), No. 10, pp.2044-2054. https://dx.doi.org/10.1007/s12613-023-2671-0

Synergically enhanced piezocatalysis performance of eco-friendly (K0.52Na0.48)NbO3 through ferroelectric polarization and defects

  • Piezocatalysis has attracted unprecedented research interest as a newly emerging catalysis technology. However, the inherent insulating property of ferroelectric materials ultimately leads to the poor vibration–electricity conversion ability. Herein, this work reports the (K0.52Na0.48)NbO3 ferroelectric ceramics (KNNFCx), for which the FeCo modification strategy is proposed. The substitution of the moderate amount of FeCo (x = 0.015) at Nb site not only optimizes ferroelectricity but also produces beneficial defects, notably increasing Rhodamine B water purification efficiency to 95%. The pinning effect of monovalent oxygen vacancies on ferroelectric domains is responsible for the excellent ferroelectric polarization of KNNFC0.015 through the generation of an internal field to promote charge carriers separation and reduce nonradiative recombination. Importantly, the accompanying electron carriers can easily move to the material surface and participate in redox reactions because they have low activation energy. Therefore, ferroelectric polarization and defects play synergetic roles in enhancing piezocatalytic performance.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return