Duanhao Cao, Xiaofeng Ma, Yipeng Zhang, La Ta, Yakun Yang, Chao Xu, Feng Ye,  and Jianguo Liu, Highly dispersed NiMo@rGO nanocomposite catalysts fabricated by a two-step hydrothermal method for hydrogen evolution, Int. J. Miner. Metall. Mater., 30(2023), No. 12, pp. 2432-2440. https://doi.org/10.1007/s12613-023-2677-7
Cite this article as:
Duanhao Cao, Xiaofeng Ma, Yipeng Zhang, La Ta, Yakun Yang, Chao Xu, Feng Ye,  and Jianguo Liu, Highly dispersed NiMo@rGO nanocomposite catalysts fabricated by a two-step hydrothermal method for hydrogen evolution, Int. J. Miner. Metall. Mater., 30(2023), No. 12, pp. 2432-2440. https://doi.org/10.1007/s12613-023-2677-7
Research Article

Highly dispersed NiMo@rGO nanocomposite catalysts fabricated by a two-step hydrothermal method for hydrogen evolution

+ Author Affiliations
  • Corresponding author:

    Chao Xu    E-mail: mechxu@ncepu.edu.cn

  • Received: 8 February 2023Revised: 14 May 2023Accepted: 16 May 2023Available online: 17 May 2023
  • Exploring and designing a high-performance non-noble metal catalyst for hydrogen evolution reaction (HER) are crucial for the large-scale application of H2 by water electrolysis. Here, novel catalysts with NiMo nanoparticles decorated on reduced graphene oxide (NiMo@rGO) synthesized by a two-step hydrothermal method were reported. Physical characterization results showed that the prepared NiMo@rGO-1 had an irregular lamellar structure, and the NiMo nanoparticles were uniformly dispersed on the rGO. NiMo@rGO-1 exhibited outstanding HER performance in an alkaline environment and required only 93 and 180 mV overpotential for HER in 1.0 M KOH solution to obtain current densities of −10 and −50 mA·cm−2, respectively. Stability tests showed that NiMo@rGO-1 had a certain operating stability for 32 h. Under the same condition, the performance of NiMo@rGO-1 can be comparable with that of commercial Pt/C catalysts at high current density. The synergistic effect between NiMo particles and lamellate graphene can remarkably promote charge transfer in electrocatalytic reactions. As a result, NiMo@rGO-1 presented the advantages of high intrinsic activity, large specific surface area, and small electrical impedance. The lamellar graphene played a role in dispersion to prevent the aggregation of nanoparticles. The prepared NiMo@rGO-1 can be used in anion exchange membrane water electrolysis to produce hydrogen. This study provides a simple preparation method for efficient and low-cost water electrolysis to produce hydrogen in the future.
  • loading
  • Supplementary Information-10.1007s12613-023-2677-7.docx
  • [1]
    B. Zhang, S.X. Zhang, R. Yao, Y.H. Wu, and J.S. Qiu, Progress and prospects of hydrogen production: Opportunities and challenges, J. Electron. Sci. Technol., 19(2021), No. 2, art. No. 100080. doi: 10.1016/j.jnlest.2021.100080
    [2]
    R.L. Germscheidt, D.E.B. Moreira, R.G. Yoshimura, et al., Hydrogen environmental benefits depend on the way of production: An overview of the main processes production and challenges by 2050, Adv. Energy Sustain. Res., 2(2021), No. 10, art. No. 2100093. doi: 10.1002/aesr.202100093
    [3]
    P.J. Megía, A.J. Vizcaíno, J.A. Calles, and A. Carrero, Hydrogen production technologies: From fossil fuels toward renewable sources. A mini review, Energy Fuels, 35(2021), No. 20, p. 16403. doi: 10.1021/acs.energyfuels.1c02501
    [4]
    M.D. Ji and J.L. Wang, Review and comparison of various hydrogen production methods based on costs and life cycle impact assessment indicators, Int. J. Hydrogen Energy, 46(2021), No. 78, p. 38612. doi: 10.1016/j.ijhydene.2021.09.142
    [5]
    S. Shiva Kumar and V. Himabindu, Hydrogen production by PEM water electrolysis - A review, Mater. Sci. Energy Technol., 2(2019), No. 3, p. 442.
    [6]
    K. Ayers, High efficiency PEM water electrolysis: Enabled by advanced catalysts, membranes, and processes, Curr. Opin. Chem. Eng., 33(2021), art. No. 100719. doi: 10.1016/j.coche.2021.100719
    [7]
    C.Q. Li and J.B. Baek, The promise of hydrogen production from alkaline anion exchange membrane electrolyzers, Nano Energy, 87(2021), art. No. 106162. doi: 10.1016/j.nanoen.2021.106162
    [8]
    H.A. Miller, Green hydrogen from anion exchange membrane water electrolysis, Curr. Opin. Electrochem., 36(2022), art. No. 101122. doi: 10.1016/j.coelec.2022.101122
    [9]
    S.A. Grigoriev, V.N. Fateev, D.G. Bessarabov, and P. Millet, Current status, research trends, and challenges in water electrolysis science and technology, Int. J. Hydrogen Energy, 45(2020), No. 49, p. 26036. doi: 10.1016/j.ijhydene.2020.03.109
    [10]
    S.G. Simoes, J. Catarino, A. Picado, et al., Water availability and water usage solutions for electrolysis in hydrogen production, J. Cleaner Prod., 315(2021), art. No. 128124. doi: 10.1016/j.jclepro.2021.128124
    [11]
    L.F. Liu, Platinum group metal free nano-catalysts for proton exchange membrane water electrolysis, Curr. Opin. Chem. Eng., 34(2021), art. No. 100743. doi: 10.1016/j.coche.2021.100743
    [12]
    L. Sun, Q.M. Luo, Z.F. Dai, and F. Ma, Material libraries for electrocatalytic overall water splitting, Coord. Chem. Rev., 444(2021), art. No. 214049. doi: 10.1016/j.ccr.2021.214049
    [13]
    M. David, C. Ocampo-Martínez, and R. Sánchez-Peña, Advances in alkaline water electrolyzers: A review, J. Energy Storage, 23(2019), p. 392. doi: 10.1016/j.est.2019.03.001
    [14]
    I. Vincent and D. Bessarabov, Low cost hydrogen production by anion exchange membrane electrolysis: A review, Renewable Sustainable Energy Rev., 81(2018), p. 1690. doi: 10.1016/j.rser.2017.05.258
    [15]
    J.C. Yang, M.J. Jang, X.J. Zeng, et al., Non-precious electrocatalysts for oxygen evolution reaction in anion exchange membrane water electrolysis: A mini review, Electrochem. Commun., 131(2021), art. No. 107118. doi: 10.1016/j.elecom.2021.107118
    [16]
    H. Wang, J.K. Xu, J. Xie, C.J. Wang, and P.H. Bai, Hydrogen evolution performance of Ni loading on the carbon-based catalysts, Mater. Chem. Phys., 272(2021), art. No. 125049. doi: 10.1016/j.matchemphys.2021.125049
    [17]
    T.Z. Xiong, B.W. Huang, J.J. Wei, et al., Unveiling the promotion of accelerated water dissociation kinetics on the hydrogen evolution catalysis of NiMoO4 nanorods, J. Energy Chem., 67(2022), p. 805. doi: 10.1016/j.jechem.2021.11.025
    [18]
    T. Wang, X.J. Wang, Y. Liu, J. Zheng, and X.G. Li, A highly efficient and stable biphasic nanocrystalline Ni–Mo–N catalyst for hydrogen evolution in both acidic and alkaline electrolytes, Nano Energy, 22(2016), p. 111. doi: 10.1016/j.nanoen.2016.02.023
    [19]
    J.L. Chang, S.Q. Zang, J.Z. Li, et al., Nitrogen-doped porous carbon encapsulated nickel iron alloy nanoparticles, one-step conversion synthesis for application as bifunctional catalyst for water electrolysis, Electrochim. Acta, 389(2021), art. No. 138785. doi: 10.1016/j.electacta.2021.138785
    [20]
    Z.N. Wang, J. Lu, S. Ji, et al., Integrating Ni nanoparticles into MoN nanosheets form Schottky heterojunctions to boost its electrochemical performance for water electrolysis, J. Alloys Compd., 867(2021), art. No. 158983. doi: 10.1016/j.jallcom.2021.158983
    [21]
    J. Zhang, T. Wang, P. Liu, et al., Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics, Nat. Commun., 8(2017), art. No. 15437. doi: 10.1038/ncomms15437
    [22]
    C. Xu, J.B. Zhou, M. Zeng, X.L. Fu, X.J. Liu, and J.M. Li, Electrodeposition mechanism and characterization of Ni–Mo alloy and its electrocatalytic performance for hydrogen evolution, Int. J. Hydrogen Energy, 41(2016), No. 31, p. 13341. doi: 10.1016/j.ijhydene.2016.06.205
    [23]
    A.G. Vidales and S. Omanovic, Evaluation of nickel-molybdenum-oxides as cathodes for hydrogen evolution by water electrolysis in acidic, alkaline, and neutral media, Electrochim. Acta, 262(2018), p. 115. doi: 10.1016/j.electacta.2018.01.007
    [24]
    L.F. Wang, M.M. Geng, X.N. Ding, et al., Research progress of the electrochemical impedance technique applied to the high-capacity lithium-ion battery, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 538. doi: 10.1007/s12613-020-2218-6
    [25]
    L.Y. Wang, L.F. Wang, R. Wang, et al., Solid electrolyte-electrode interface based on buffer therapy in solid-state lithium batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1584. doi: 10.1007/s12613-021-2278-2
    [26]
    X.Y. Zhang, W.L. Yu, J. Zhao, B. Dong, C.G. Liu, and Y.M. Chai, Recent development on self-supported transition metal-based catalysts for water electrolysis at large current density, Appl. Mater. Today, 22(2021), art. No. 100913. doi: 10.1016/j.apmt.2020.100913
    [27]
    A. Faid, A.O. Barnett, F. Seland, and S. Sunde, Highly active nickel-based catalyst for hydrogen evolution in anion exchange membrane electrolysis, Catalysts, 8(2018), No. 12, art. No. 614. doi: 10.3390/catal8120614
    [28]
    X. Chen, C. Shi, and C.H. Liang, Highly selective catalysts for the hydrogenation of alkynols: A review, Chin. J. Catal., 42(2021), No. 12, p. 2105. doi: 10.1016/S1872-2067(20)63773-1
    [29]
    S. Shetty, M.M.J. Sadiq, D.K. Bhat, and A.C. Hegde, Electrodeposition of Ni–Mo–rGO composite electrodes for efficient hydrogen production in an alkaline medium, New J. Chem., 42(2018), No. 6, p. 4661. doi: 10.1039/C7NJ04552B
    [30]
    S. Korkmaz and İ.A. Kariper, Graphene and graphene oxide based aerogels: Synthesis, characteristics and supercapacitor applications, J. Energy Storage, 27(2020), art. No. 101038. doi: 10.1016/j.est.2019.101038
    [31]
    M.T. Safian, K. Umar, and M.N.M. Ibrahim, Synthesis and scalability of graphene and its derivatives: A journey towards sustainable and commercial material, J. Cleaner Prod., 318(2021), art. No. 128603. doi: 10.1016/j.jclepro.2021.128603
    [32]
    D.C. Marcano, D.V. Kosynkin, J.M. Berlin, et al., Improved synthesis of graphene oxide, ACS Nano, 4(2010), No. 8, p. 4806. doi: 10.1021/nn1006368
    [33]
    K.S. Novoselov, A.K. Geim, S.V. Morozov, et al., Electric field effect in atomically thin carbon films, Science, 306(2004), No. 5696, p. 666. doi: 10.1126/science.1102896
    [34]
    X.T. Li, X.G. Duan, C. Han, et al., Chemical activation of nitrogen and sulfur co-doped graphene as defect-rich carbocatalyst for electrochemical water splitting, Carbon, 148(2019), p. 540. doi: 10.1016/j.carbon.2019.04.021
    [35]
    P.P.A. Jose, M.S. Kala, N. Kalarikkal, and S. Thomas, Reduced graphene oxide produced by chemical and hydrothermal methods, Mater. Today Proc., 5(2018), No. 8, p. 16306. doi: 10.1016/j.matpr.2018.05.124
    [36]
    D. Chanda, J. Hnát, A.S. Dobrota, I.A. Pašti, M. Paidar, and K. Bouzek, The effect of surface modification by reduced graphene oxide on the electrocatalytic activity of nickel towards the hydrogen evolution reaction, Phys. Chem. Chem. Phys., 17(2015), No. 40, p. 26864. doi: 10.1039/C5CP04238K
    [37]
    Z.B. Feng, H. Zhang, B. Gao, P. Lu, D.G. Li, and P.F. Xing, Ni–Zn nanosheet anchored on rGO as bifunctional electrocatalyst for efficient alkaline water-to-hydrogen conversion via hydrazine electrolysis, Int. J. Hydrogen Energy, 45(2020), No. 38, p. 19335. doi: 10.1016/j.ijhydene.2020.05.120
    [38]
    S.J. Gutić, A.Z. Jovanović, A.S. Dobrota, et al., Simple routes for the improvement of hydrogen evolution activity of Ni–Mo catalysts: From sol–gel derived powder catalysts to graphene supported co-electrodeposits, Int. J. Hydrogen Energy, 43(2018), No. 35, p. 16846. doi: 10.1016/j.ijhydene.2017.11.131
    [39]
    M. Nemiwal, T.C. Zhang, and D. Kumar, Graphene-based electrocatalysts: Hydrogen evolution reactions and overall water splitting, Int. J. Hydrogen Energy, 46(2021), No. 41, p. 21401. doi: 10.1016/j.ijhydene.2021.04.008
    [40]
    L. Wang, M.Y. Gan, L. Ma, et al., One-step preparation of polyaniline-modified three-dimensional multilayer graphene supported PtFeOx for methanol oxidation, Synth. Met., 287(2022), art. No. 117068. doi: 10.1016/j.synthmet.2022.117068
    [41]
    V.B. Mbayachi, E. Ndayiragije, T. Sammani, S. Taj, E.R. Mbuta, and A.U. Khan, Graphene synthesis, characterization and its applications: A review, Results Chem., 3(2021), art. No. 100163. doi: 10.1016/j.rechem.2021.100163
    [42]
    M. Yusuf, M. Kumar, M.A. Khan, M. Sillanpää, and H. Arafat, A review on exfoliation, characterization, environmental and energy applications of graphene and graphene-based composites, Adv. Colloid Interface Sci., 273(2019), art. No. 102036. doi: 10.1016/j.cis.2019.102036
    [43]
    Q. Zhang, P.S. Li, D.J. Zhou, Z. Chang, Y. Kuang, and X.M. Sun, Superaerophobic ultrathin Ni–Mo alloy nanosheet array from in situ topotactic reduction for hydrogen evolution reaction, Small, 13(2017), No. 41, art. No. 1701648. doi: 10.1002/smll.201701648
    [44]
    C. Ros, S. Murcia-López, X. Garcia, et al., Facing seawater splitting challenges by regeneration with Ni–Mo–Fe bifunctional electrocatalyst for hydrogen and oxygen evolution, ChemSusChem, 14(2021), No. 14, p. 2872. doi: 10.1002/cssc.202100194
    [45]
    J.A. Bau, S.M. Kozlov, L.M. Azofra, et al., Role of oxidized Mo species on the active surface of Ni–Mo electrocatalysts for hydrogen evolution under alkaline conditions, ACS Catal., 10(2020), No. 21, p. 12858. doi: 10.1021/acscatal.0c02743
    [46]
    S.N. Hu, H.M. Wu, C.Q. Feng, and Y. Ding, Synthesis of non-noble NiMoO4-Ni(OH)2/NF bifunctional electrocatalyst and its application in water-urea electrolysis, Int. J. Hydrogen Energy, 45(2020), No. 41, p. 21040. doi: 10.1016/j.ijhydene.2020.05.279
    [47]
    S. Xue, W.M. Zhang, Q. Zhang, J.H. Du, H.M. Cheng, and W.C. Ren, Heterostructured Ni–Mo–N nanoparticles decorated on reduced graphene oxide as efficient and robust electrocatalyst for hydrogen evolution reaction, Carbon, 165(2020), p. 122. doi: 10.1016/j.carbon.2020.04.066
    [48]
    X.Y. Luo, H.M. Xiao, J.Y. Li, et al., Cyclic ether on Pt-based carbon support for enhanced alkaline hydrogen evolution, J. Electroanal. Chem., 939(2023), art. No. 117476. doi: 10.1016/j.jelechem.2023.117476
    [49]
    M.X. Zhao, L.Q. Yang, Z.Y. Cai, H. Guo, and Z.J. Zhao, Design of binder-free hierarchical Mo–Fe–Ni phosphides nanowires array anchored on carbon cloth with high electrocatalytic capability toward hydrogen evolution reaction, J. Alloys Compd., 891(2022), art. No. 162064. doi: 10.1016/j.jallcom.2021.162064
    [50]
    A.M. Venezia, V. La Parola, and L.F. Liotta, Structural and surface properties of heterogeneous catalysts: Nature of the oxide carrier and supported particle size effects, Catal. Today, 285(2017), p. 114. doi: 10.1016/j.cattod.2016.11.004
    [51]
    L.X. Wang, Y. Li, M.R. Xia, et al., Ni nanoparticles supported on graphene layers: An excellent 3D electrode for hydrogen evolution reaction in alkaline solution, J. Power Sources, 347(2017), p. 220. doi: 10.1016/j.jpowsour.2017.02.017
    [52]
    I. Flis-Kabulska and J. Flis, Electrodeposits of nickel with reduced graphene oxide (Ni/rGO) and their enhanced electroactivity towards hydrogen evolution in water electrolysis, Mater. Chem. Phys., 241(2020), art. No. 122316. doi: 10.1016/j.matchemphys.2019.122316
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Share Article

    Article Metrics

    Article Views(768) PDF Downloads(38) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return