Jingou Kuangand Zhilin Long, Prediction model for corrosion rate of low-alloy steels under atmospheric conditions using machine learning algorithms, Int. J. Miner. Metall. Mater., 31(2024), No. 2, pp. 337-350. https://doi.org/10.1007/s12613-023-2679-5
Cite this article as:
Jingou Kuangand Zhilin Long, Prediction model for corrosion rate of low-alloy steels under atmospheric conditions using machine learning algorithms, Int. J. Miner. Metall. Mater., 31(2024), No. 2, pp. 337-350. https://doi.org/10.1007/s12613-023-2679-5
Research Article

Prediction model for corrosion rate of low-alloy steels under atmospheric conditions using machine learning algorithms

+ Author Affiliations
  • Corresponding author:

    Zhilin Long    E-mail: longzl@xtu.edu.cn

  • Received: 29 April 2023Revised: 15 May 2023Accepted: 16 May 2023Available online: 17 May 2023
  • This work constructed a machine learning (ML) model to predict the atmospheric corrosion rate of low-alloy steels (LAS). The material properties of LAS, environmental factors, and exposure time were used as the input, while the corrosion rate as the output. 6 different ML algorithms were used to construct the proposed model. Through optimization and filtering, the eXtreme gradient boosting (XGBoost) model exhibited good corrosion rate prediction accuracy. The features of material properties were then transformed into atomic and physical features using the proposed property transformation approach, and the dominant descriptors that affected the corrosion rate were filtered using the recursive feature elimination (RFE) as well as XGBoost methods. The established ML models exhibited better prediction performance and generalization ability via property transformation descriptors. In addition, the SHapley additive exPlanations (SHAP) method was applied to analyze the relationship between the descriptors and corrosion rate. The results showed that the property transformation model could effectively help with analyzing the corrosion behavior, thereby significantly improving the generalization ability of corrosion rate prediction models.
  • loading
  • [1]
    Z.F. Wang, J.R. Liu, L.X. Wu, R.D. Han, and Y.Q. Sun, Study of the corrosion behavior of weathering steels in atmospheric environments, Corros. Sci., 67(2013), p. 1. doi: 10.1016/j.corsci.2012.09.020
    [2]
    H. Cano, I. Díaz, D. de la Fuente, B. Chico, and M. Morcillo, Effect of Cu, Cr and Ni alloying elements on mechanical properties and atmospheric corrosion resistance of weathering steels in marine atmospheres of different aggressivities, Mater. Corros., 69(2018), No. 1, p. 8. doi: 10.1002/maco.201709656
    [3]
    W. Wu, L.L. Zhu, P.L. Chai, et al., Atmospheric corrosion behavior of Nb- and Sb-added weathering steels exposed to the South China Sea, Int. J. Miner. Metall. Mater., 29(2022), No. 11, p. 2041. doi: 10.1007/s12613-021-2383-2
    [4]
    M.H. Sun, X.J. Yang, C.W. Du, et al., Distinct beneficial effect of Sn on the corrosion resistance of Cr–Mo low alloy steel, J. Mater. Sci. Technol., 81(2021), p. 175. doi: 10.1016/j.jmst.2020.12.014
    [5]
    S. Jiang, J.P. Cao, Z.Y. Liu, X.X. Xu, J.W. Yang, and X.T. Li, Effect of Ni on the oxidation behavior of corrosion products that form on low alloy steel exposed to a thin electrolyte layer environment, Corros. Sci., 206(2022), art. No. 110471. doi: 10.1016/j.corsci.2022.110471
    [6]
    T. Kamimura, K. Kashima, K. Sugae, H. Miyuki, and T. Kudo, The role of chloride ion on the atmospheric corrosion of steel and corrosion resistance of Sn-bearing steel, Corros. Sci., 62(2012), p. 34. doi: 10.1016/j.corsci.2012.04.049
    [7]
    T.Q. Wu, M.C. Yan, J. Xu, Y.X. Liu, C. Sun, and W. Ke, Mechano-chemical effect of pipeline steel in microbiological corrosion, Corros. Sci., 108(2016), p. 160. doi: 10.1016/j.corsci.2016.03.011
    [8]
    C.G. Soares, Y. Garbatov, A. Zayed, and G. Wang, Influence of environmental factors on corrosion of ship structures in marine atmosphere, Corros. Sci., 51(2009), No. 9, p. 2014. doi: 10.1016/j.corsci.2009.05.028
    [9]
    H.Y. Tian, Z.Y. Cui, H. Ma, et al., Corrosion evolution and stress corrosion cracking behavior of a low carbon bainite steel in the marine environments: Effect of the marine zones, Corros. Sci., 206(2022), art. No. 110490. doi: 10.1016/j.corsci.2022.110490
    [10]
    A. Lazareva, J. Owen, S. Vargas, R. Barker, and A. Neville, Investigation of the evolution of an iron carbonate layer and its effect on localized corrosion of X65 carbon steel in CO2 corrosion environments, Corros. Sci., 192(2021), art. No. 109849. doi: 10.1016/j.corsci.2021.109849
    [11]
    Y.M. Panchenko and A.I. Marshakov, Long-term prediction of metal corrosion losses in atmosphere using a power-linear function, Corros. Sci., 109(2016), p. 217. doi: 10.1016/j.corsci.2016.04.002
    [12]
    Y.K. Cai, Y. Zhao, X.B. Ma, K. Zhou, and Y. Chen, Influence of environmental factors on atmospheric corrosion in dynamic environment, Corros. Sci., 137(2018), p. 163. doi: 10.1016/j.corsci.2018.03.042
    [13]
    X.G. Sun, P. Lin, C. Man, et al., Prediction model for atmospheric corrosion of 7005-T4 aluminum alloy in industrial and marine environments, Int. J. Miner. Metall. Mater., 25(2018), No. 11, p. 1313. doi: 10.1007/s12613-018-1684-6
    [14]
    I. Díaz, H. Cano, B. Chico, D. de la Fuente, and M. Morcillo, Some clarifications regarding literature on atmospheric corrosion of weathering steels, Int. J. Corros., 2012(2012), art. No. 812192.
    [15]
    M. Morcillo, B. Chico, I. Díaz, H. Cano, and D. de la Fuente, Atmospheric corrosion data of weathering steels. A review, Corros. Sci., 77(2013), p. 6. doi: 10.1016/j.corsci.2013.08.021
    [16]
    B. Chico, D. De la Fuente, I. Díaz, J. Simancas, and M. Morcillo, Annual atmospheric corrosion of carbon steel worldwide. an integration of ISOCORRAG, ICP/UNECE and MICAT databases, Materials, 10(2017), No. 6, art. No. 601. doi: 10.3390/ma10060601
    [17]
    Y.J. Zhi, Z.H. Jin, L. Lu, et al., Improving atmospheric corrosion prediction through key environmental factor identification by random forest-based model, Corros. Sci., 178(2021), art. No. 109084. doi: 10.1016/j.corsci.2020.109084
    [18]
    Y.J. Zhi, D.M. Fu, D.W. Zhang, T. Yang, and X.G. Li, Prediction and knowledge mining of outdoor atmospheric corrosion rates of low alloy steels based on the random forests approach, Metals, 9(2019), No. 3, art. No. 383. doi: 10.3390/met9030383
    [19]
    L.C. Yan, Y.P. Diao, Z.Y. Lang, and K.W. Gao, Corrosion rate prediction and influencing factors evaluation of low-alloy steels in marine atmosphere using machine learning approach, Sci. Technol. Adv. Mater., 21(2020), No. 1, p. 359. doi: 10.1080/14686996.2020.1746196
    [20]
    Y.J. Zhi, T. Yang, and D.M. Fu, An improved deep forest model for forecast the outdoor atmospheric corrosion rate of low-alloy steels, J. Mater. Sci. Technol., 49(2020), p. 202. doi: 10.1016/j.jmst.2020.01.044
    [21]
    Y.J. Lv, J.W. Wang, J.L. Wang, et al., Steel corrosion prediction based on support vector machines, Chaos Solitons Fractals, 136(2020), art. No. 109807. doi: 10.1016/j.chaos.2020.109807
    [22]
    X. Wei, D.M. Fu, M.D. Chen, W. Wu, D.Q. Wu, and C. Liu, Data mining to effect of key alloying elements on corrosion resistance of low alloy steels in Sanya seawater environment alloying elements, J. Mater. Sci. Technol., 64(2021), p. 222. doi: 10.1016/j.jmst.2020.01.040
    [23]
    Z.B. Pei, D.W. Zhang, Y.J. Zhi, et al., Towards understanding and prediction of atmospheric corrosion of an Fe/Cu corrosion sensor via machine learning, Corros. Sci., 170(2020), art. No. 108697. doi: 10.1016/j.corsci.2020.108697
    [24]
    X.J. Yang, J.K. Yang, Y. Yang, et al., Data-mining and atmospheric corrosion resistance evaluation of Sn- and Sb-additional low alloy steel based on big data technology, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 825. doi: 10.1007/s12613-022-2457-9
    [25]
    M. Kamrunnahar and M. Urquidi-Macdonald, Prediction of corrosion behavior using neural network as a data mining tool, Corros. Sci., 52(2010), No. 3, p. 669. doi: 10.1016/j.corsci.2009.10.024
    [26]
    J.C. Xie and L. Zhang, Machine learning and symbolic regression for adsorption of atmospheric molecules on low-dimensional TiO2, Appl. Surf. Sci., 597(2022), art. No. 153728. doi: 10.1016/j.apsusc.2022.153728
    [27]
    B.Y. Ren, Z.L. Long, and R.J. Deng, A new criterion for predicting the glass-forming ability of alloys based on machine learning, Comput. Mater. Sci., 189(2021), art. No. 110259. doi: 10.1016/j.commatsci.2020.110259
    [28]
    Y.P. Diao, L.C. Yan, and K.W. Gao, Improvement of the machine learning-based corrosion rate prediction model through the optimization of input features, Mater. Des., 198(2021), art. No. 109326. doi: 10.1016/j.matdes.2020.109326
    [29]
    National Material Environment Corrosion Platform, National Material Corrosion and Protection Data Center, [2022-06-10]. https://www.corrdata.org.cn/
    [30]
    M. Shiri and D. Rezakhani, Estimated and stationary atmospheric corrosion rate of carbon steel, galvanized steel, copper and aluminum in Iran, Metall. Mater. Trans. A, 51(2020), No. 1, p. 342. doi: 10.1007/s11661-019-05509-1
    [31]
    Stratmann M. The atmospheric corrosion of iron—A discussion of the physico–chemical fundamentals of this omnipresent corrosion process, Ber. Bunsenges. Phys. Chem., 94(1990), No. 6, p. 626.
    [32]
    E. Bernardi, I. Vassura, S. Raffo, et al., Influence of inorganic anions from atmospheric depositions on weathering steel corrosion and metal release, Constr. Build. Mater., 236(2020), art. No. 117515. doi: 10.1016/j.conbuildmat.2019.117515
    [33]
    M. Morcillo, B. Chico, J. Alcántara, I. Díaz, J. Simancas, and D. de la Fuente, Atmospheric corrosion of mild steel in chloride-rich environments. Questions to be answered, Mater. Corros., 66(2015), No. 9, p. 882. doi: 10.1002/maco.201407940
    [34]
    P. Refait, O. Benali, M. Abdelmoula, and J.M.R. Génin, Formation of ‘ferric green rust’ and/or ferrihydrite by fast oxidation of iron (II–III) hydroxychloride green rust, Corros. Sci., 45(2003), No. 11, p. 2435. doi: 10.1016/S0010-938X(03)00073-8
    [35]
    Q.C. Zhang, J.S. Wu, J.J. Wang, W.L. Zheng, J.G. Chen, and A.B. Li, Corrosion behavior of weathering steel in marine atmosphere, Mater. Chem. Phys., 77(2003), No. 2, p. 603. doi: 10.1016/S0254-0584(02)00110-4
    [36]
    The University of Sheffield and WebElements Ltd, UK, The periodic table of the elements, [2022–06–27]. https://webelements.com/.
    [37]
    J.H. Chu, L.B. Tong, W. Wang, et al., Sequentially bridged biomimetic graphene-based coating via covalent bonding with an effective anti-corrosion/wear protection for Mg alloy, Colloids Surf. A, 610(2021), art. No. 125707. doi: 10.1016/j.colsurfa.2020.125707
    [38]
    C.Z. Wang, X.H. Wang, and X.Z. Qin, Research on atmospheric corrosion rule of carbon steel and low alloy steel in Chongqing and Wanning area, Equip. Environ. Eng., 3(2006), No. 2, p. 23.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(12)

    Share Article

    Article Metrics

    Article Views(1785) PDF Downloads(116) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return