Saida Shaik, Zhiyuan Chen, Preeti Prakash Sahoo,  and Chenna Rao Borra, Kinetics of solid-state reduction of chromite overburden, Int. J. Miner. Metall. Mater., 30(2023), No. 12, pp. 2347-2355. https://doi.org/10.1007/s12613-023-2681-y
Cite this article as:
Saida Shaik, Zhiyuan Chen, Preeti Prakash Sahoo,  and Chenna Rao Borra, Kinetics of solid-state reduction of chromite overburden, Int. J. Miner. Metall. Mater., 30(2023), No. 12, pp. 2347-2355. https://doi.org/10.1007/s12613-023-2681-y
Research Article

Kinetics of solid-state reduction of chromite overburden

+ Author Affiliations
  • Corresponding author:

    Chenna Rao Borra    E-mail: chenna.borra@metal.iitkgp.ac.in

  • Received: 23 December 2022Revised: 11 May 2023Accepted: 17 May 2023Available online: 19 May 2023
  • The demand for alternative low-grade iron ores is on the rise due to the rapid depletion of high-grade natural iron ore resources and the increased need for steel usage in daily life. However, the use of low-grade iron ores is a constant clinical task for industry metallurgists. Direct smelting of low-grade ores consumes a substantial amount of energy due to the large volume of slag generated. This condition can be avoided by direct reduction followed by magnetic separation (to separate the high amount of gangue or refractory and metal parts) and smelting. Chromite overburden (COB) is a mine waste generated in chromite ore processing, and it mainly consists of iron, chromium, and nickel (<1wt%). In the present work, the isothermal and non-isothermal kinetics of the solid-state reduction of self-reduced pellets prepared using low-grade iron ore (COB) were thoroughly investigated via thermal analysis. The results showed that the reduction of pellets followed a first-order autocatalytic reaction control mechanism in the temperature range of 900–1100°C. The autocatalytic nature of the reduction reaction was due to the presence of nickel in the COB. The apparent activation energy obtained from the kinetics results showed that the solid-state reactions between COB and carbon were the rate-determining step in iron oxide reduction.
  • loading
  • [1]
    S. Biswas, S. Samanta, R. Dey, S. Mukherjee, and P.C. Banerjee, Microbial leaching of chromite overburden from sukinda mines, Orissa, India using Aspergillus niger, Int. J. Miner. Metall. Mater., 20(2013), No. 8, p. 705. doi: 10.1007/s12613-013-0787-3
    [2]
    X.R. Zhang, G. Li, J. Wu, N. Xiong, and X.J. Quan, Leaching of valuable elements from the waste chromite ore processing residue: A kinetic analysis, ACS Omega, 5(2020), No. 31, p. 19633. doi: 10.1021/acsomega.0c02194
    [3]
    T.G. Wang, M.L. He, and Q. Pan, A new method for the treatment of chromite ore processing residues, J. Hazard. Mater., 149(2007), No. 2, p. 440. doi: 10.1016/j.jhazmat.2007.04.009
    [4]
    S.K. Behera, S.K. Panda, N. Pradhan, L.B. Sukla, and B.K. Mishra, Extraction of nickel by microbial reduction of lateritic chromite overburden of Sukinda, India, Bioresour. Technol., 125(2012), p. 17. doi: 10.1016/j.biortech.2012.08.076
    [5]
    G.U. Kapure, C.B. Rao, V.D. Tathavadkar, and R. Sen, Direct reduction of low grade chromite overburden for recovery of metals, Ironmaking Steelmaking, 38(2011), No. 8, p. 590. doi: 10.1179/1743281211Y.0000000028
    [6]
    Y. Cao, Y.S. Sun, P. Gao, Y.X. Han, and Y.J. Li, Mechanism for suspension magnetization roasting of iron ore using straw-type biomass reductant, Int. J. Min. Sci. Technol., 31(2021), No. 6, p. 1075. doi: 10.1016/j.ijmst.2021.09.008
    [7]
    Z.K. Liang, L.Y. Yi, Z.C. Huang, B.Y. Huang, and H.T. Han, A novel and green metallurgical technique of highly efficient iron recovery from refractory low-grade iron ores, ACS Sustainable Chem. Eng., 7(2019), No. 22, p. 18726. doi: 10.1021/acssuschemeng.9b05423
    [8]
    P. Gupta, A.K. Bhandary, M.G. Chaudhuri, S. Mukherjee, and R. Dey, Kinetic studies on the reduction of iron oxides in low-grade chromite ore by coke fines for its beneficiation, Arab. J. Sci. Eng., 43(2018), No. 11, p. 6143. doi: 10.1007/s13369-018-3324-x
    [9]
    M.I. Nasr, A.A. Omar, M.H. Khedr, and A.A. El-Geassy, Effect of nickel oxide doping on the kinetics and mechanism of iron oxide reduction, ISIJ Int., 35(1995), No. 9, p. 1043. doi: 10.2355/isijinternational.35.1043
    [10]
    D.W. Yu and D. Paktunc, Kinetics and mechanisms of the carbothermic reduction of chromite in the presence of nickel, J. Therm. Anal. Calorim., 132(2018), No. 1, p. 143. doi: 10.1007/s10973-017-6936-6
    [11]
    R. G. Reddy, R. B. Inturi, and M. V. Klein, Low temperature reduction of chromite ores with carbon, [in] EPD Congress Proceedings Sessions and Symposium, Warrendale, 1998, p. 697.
    [12]
    D. Chakraborty, S. Ranganathan, and S.N. Sinha, Investigations on the carbothermic reduction of chromite ores, Metall. Mater. Trans. B, 36(2005), No. 4, p. 437. doi: 10.1007/s11663-005-0034-z
    [13]
    N.S. Sundar Murti and V. Seshadri, Kinetics of reduction of synthetic chromite with carbon, ISIJ Int., 22(1982), No. 12, p. 925. doi: 10.2355/isijinternational1966.22.925
    [14]
    J.K. Wright, K.M. Bowling, and A.L. Morrison, Reduction of hematite pellets with carbonized coal in a static bed, ISIJ Int., 21(1981), No. 3, p. 149. doi: 10.2355/isijinternational1966.21.149
    [15]
    S. Saida, S. Chakravaty, R.N. Sahu, R. Biswas, and K. Chakravarty, Laboratory-scale tests for the utilization of high ash non-coking coal in coke-making process, Trans. Indian Inst. Met., 73(2020), No. 5, p. 1257. doi: 10.1007/s12666-020-01974-0
    [16]
    S. Shaik, S. Chakravarty, P.R. Mishra, R.N. Sahu, and K. Chakravarty, Caking ability tests for coal blends in process to utilize the Indian origin coals, Trans. Indian Inst. Met., 72(2019), No. 12, p. 3129. doi: 10.1007/s12666-019-01778-x
    [17]
    K.L. Bhaskar and B. Bhoi, Iron and nickel enrichment in low grade chromite overburden to produce ferronickel alloys, Trans. Indian Inst. Met., 74(2021), No. 6, p. 1321. doi: 10.1007/s12666-020-02176-4
    [18]
    C.W. Bale, P. Chartrand, S.A. Degterov, et al., FactSage thermochemical software and databases, Calphad, 26(2002), No. 2, p. 189. doi: 10.1016/S0364-5916(02)00035-4
    [19]
    X.M. Lv, W. Lv, Z.X. You, X.W. Lv, and C.G. Bai, Non-isothermal kinetics study on carbothermic reduction of nickel laterite ore, Powder Technol., 340(2018), p. 495. doi: 10.1016/j.powtec.2018.09.061
    [20]
    P.K. Weissenborn, J.G. Dunn, and L.J. Warren, Quantitative thermogravimetric analysis of haematite, goethite and kaolinite in Western Australian iron ores, Thermochim. Acta, 239(1994), p. 147. doi: 10.1016/0040-6031(94)87063-2
    [21]
    E. Donskoi, D.L.S. McElwain, and L.J. Wibberley, Estimation and modeling of parameters for direct reduction in iron ore/coal composites: Part II. Kinetic parameters, Metall. Mater. Trans. B, 34(2003), No. 2, p. 255. doi: 10.1007/s11663-003-0012-2
    [22]
    Y. Man, J.X. Feng, Y.M. Chen, and J.Z. Zhou, Mass loss and direct reduction characteristics of iron ore-coal composite pellets, J. Iron Steel Res. Int., 21(2014), No. 12, p. 1090. doi: 10.1016/S1006-706X(14)60188-6
    [23]
    R.F. Wei, D.Q. Cang, L.L. Zhang, and Y.Y. Bai, Staged reaction kinetics and characteristics of iron oxide direct reduction by carbon, Int. J. Miner. Metall. Mater., 22(2015), No. 10, p. 1025. doi: 10.1007/s12613-015-1164-1
    [24]
    J.L. Zhang, Y. Li, Z.J. Liu, et al., Isothermal kinetic analysis on reduction of solid/liquid wustite by hydrogen, Int. J. Miner. Metall. Mater., 29(2022), No. 10, p. 1830. doi: 10.1007/s12613-022-2518-0
    [25]
    Z.Y. Chen, C. Zeilstra, J. Van Der Stel, J. Sietsma, and Y.X. Yang, Thermal decomposition reaction kinetics of hematite ore, ISIJ Int., 60(2020), No. 1, p. 65. doi: 10.2355/isijinternational.ISIJINT-2019-129
    [26]
    S. Ali, Y. Iqbal, I. Khan, et al., Hydrometallurgical leaching and kinetic modeling of low-grade manganese ore with banana peel in sulfuric acid, Int. J. Miner. Metall. Mater., 28(2021), No. 2, p. 193. doi: 10.1007/s12613-020-2069-1
    [27]
    N. Birkner and A. Navrotsky, Thermodynamics of manganese oxides: Effects of particle size and hydration on oxidation-reduction equilibria among hausmannite, bixbyite, and pyrolusite, Am. Mineral., 97(2012), No. 8-9, p. 1291. doi: 10.2138/am.2012.3982
    [28]
    P. Gao, G.F. Li, X.T. Gu, and Y.X. Han, Reduction kinetics and microscopic properties transformation of boron-bearing iron concentrate–carbon-mixed pellets, Miner. Process. Extr. Metall. Rev., 41(2020), No. 3, p. 162. doi: 10.1080/08827508.2019.1598403
    [29]
    M. Kumar and S.K. Patel, Assessment of reduction behavior of hematite iron ore pellets in coal fines for application in sponge ironmaking, Miner. Process. Extr. Metall. Rev., 30(2009), No. 3, p. 240. doi: 10.1080/08827500802498215
    [30]
    H.U. Ross, The fundamental aspects of iron ore reduction, [in] Symposium on Science and Technology of Sponge Iron and its Conversion to Steel, Jamshedpur, 1973, p. 134.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(7)

    Share Article

    Article Metrics

    Article Views(746) PDF Downloads(54) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return