Jinshan Wang, Feng Li, Si Zhao, Lituo Zheng, Yiyin Huang,  and Zhensheng Hong, Uniform nanoplating of metallic magnesium film on titanium dioxide nanotubes as a skeleton for reversible Na metal anode, Int. J. Miner. Metall. Mater., 30(2023), No. 10, pp. 1868-1877. https://doi.org/10.1007/s12613-023-2685-7
Cite this article as:
Jinshan Wang, Feng Li, Si Zhao, Lituo Zheng, Yiyin Huang,  and Zhensheng Hong, Uniform nanoplating of metallic magnesium film on titanium dioxide nanotubes as a skeleton for reversible Na metal anode, Int. J. Miner. Metall. Mater., 30(2023), No. 10, pp. 1868-1877. https://doi.org/10.1007/s12613-023-2685-7
Research Article

Uniform nanoplating of metallic magnesium film on titanium dioxide nanotubes as a skeleton for reversible Na metal anode

+ Author Affiliations
  • Corresponding authors:

    Lituo Zheng    E-mail: zhenglituo@fjnu.edu.cn

    Zhensheng Hong    E-mail: zshong@fjnu.edu.cn

  • Received: 27 March 2023Revised: 22 May 2023Accepted: 29 May 2023Available online: 31 May 2023
  • To meet the low-cost concept advocated by the sodium metal anode, this paper reports the use of a pulsed electrodeposition technology with ionic liquids as electrolytes to achieve uniform nanoplating of metallic magnesium films at around 20 nm on spaced titanium dioxide (TiO2) nanotubes (STNA-Mg). First, the sodiophilic magnesium metal coating can effectively reduce the nucleation overpotential of sodium metal. Moreover, three-dimensional STNA can limit the volume expansion during sodium metal plating and stripping to achieve the ultrastable deposition and stripping of sodium metals with a high Coulombic efficiency of up to 99.5% and a small voltage polarization of 5 mV in symmetric Na||Na batteries. In addition, the comparative study of sodium metal deposition behavior of STNA-Mg and STNA-Cu prepared by the same route further confirmed the advantage of magnesium metal to guide sodium metal growth. Finally, the prepared STNA-Mg–Na metal anode and commercial sodium vanadium phosphate cathode were assembled into a full cell, delivering a discharge capacity of 110.2 mAh·g−1 with a retention rate of 95.6% after 110 cycles at 1C rate.
  • loading
  • Supplementary Information-10.1007s12613-023-2685-7.doc
  • [1]
    T.F. Liu, X.K. Yang, J.W. Nai, et al., Recent development of Na metal anodes: Interphase engineering chemistries determine the electrochemical performance, Chem. Eng. J., 409(2021), art. No. 127943. doi: 10.1016/j.cej.2020.127943
    [2]
    B. Sun, P. Xiong, U. Maitra, et al., Design strategies to enable the efficient use of sodium metal anodes in high-energy batteries, Adv. Mater., 32(2020), No. 18, art. No. 1903891. doi: 10.1002/adma.201903891
    [3]
    C. Delmas, Sodium and sodium-ion batteries: 50 years of research, Adv. Energy Mater., 8(2018), No. 17, art. No. 1703137. doi: 10.1002/aenm.201703137
    [4]
    Z.Y. Feng, W.J. Peng, Z.X. Wang, et al., Review of silicon-based alloys for lithium-ion battery anodes, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1549. doi: 10.1007/s12613-021-2335-x
    [5]
    L.F. Wang, J.Y. Wang, L.Y. Wang, M.J. Zhang, R. Wang, and C. Zhan, A critical review on nickel-based cathodes in rechargeable batteries, Int. J. Miner. Metall. Mater., 29(2022), No. 5, p. 925. doi: 10.1007/s12613-022-2446-z
    [6]
    B. Lee, E. Paek, D. Mitlin, and S.W. Lee, Sodium metal anodes: Emerging solutions to dendrite growth, Chem. Rev., 119(2019), No. 8, p. 5416. doi: 10.1021/acs.chemrev.8b00642
    [7]
    Y. Zhao, K.R. Adair, and X.L. Sun, Recent developments and insights into the understanding of Na metal anodes for Na-metal batteries, Energy Environ. Sci., 11(2018), No. 10, p. 2673. doi: 10.1039/C8EE01373J
    [8]
    L.L. Fan and X.F. Li, Recent advances in effective protection of sodium metal anode, Nano Energy, 53(2018), p. 630. doi: 10.1016/j.nanoen.2018.09.017
    [9]
    Z.P. Li, K.J. Zhu, P. Liu, and L.F. Jiao, 3D confinement strategy for dendrite-free sodium metal batteries, Adv. Energy Mater., 12(2022), No. 4, art. No. 2100359. doi: 10.1002/aenm.202100359
    [10]
    W. Liu, P.C. Liu, and D. Mitlin, Review of emerging concepts in SEI analysis and artificial SEI membranes for lithium, sodium, and potassium metal battery anodes, Adv. Energy Mater., 10(2020), No. 43, art. No. 2002297. doi: 10.1002/aenm.202002297
    [11]
    F. Jin, B. Wang, J.L. Wang, et al., Boosting electrochemical kinetics of S cathodes for room temperature Na/S batteries, Matter, 4(2021), No. 6, p. 1768. doi: 10.1016/j.matt.2021.03.004
    [12]
    H. Kim, M.K. Sadan, C. Kim, et al., Enhanced reversible capacity of sulfurized polyacrylonitrile cathode for room-temperature Na/S batteries by electrochemical activation, Chem. Eng. J., 426(2021), art. No. 130787. doi: 10.1016/j.cej.2021.130787
    [13]
    X.T. Lin, Y.P. Sun, Q. Sun, et al., Reviving anode protection layer in Na–O2 batteries: Failure mechanism and resolving strategy, Adv. Energy Mater., 11(2021), No. 11, art. No. 2003789. doi: 10.1002/aenm.202003789
    [14]
    J.F. Xie, Z. Zhou, and Y.B. Wang, Metal–CO2 batteries at the crossroad to practical energy storage and CO2 recycle, Adv. Funct. Mater., 30(2020), No. 9, art. No. 1908285. doi: 10.1002/adfm.201908285
    [15]
    Q.Y. Guo and Z.J. Zheng, Rational design of binders for stable Li–S and Na–S batteries, Adv. Funct. Mater., 30(2020), No. 6, art. No. 1907931. doi: 10.1002/adfm.201907931
    [16]
    X.J. Lai, Z.M. Xu, X.F. Yang, et al., Long cycle life and high-rate sodium metal batteries enabled by regulating 3D frameworks with artificial solid-state interphases, Adv. Energy Mater., 12(2022), No. 10, art. No. 2103540. doi: 10.1002/aenm.202103540
    [17]
    H. Wang, C.L. Wang, E. Matios, and W.Y. Li, Critical role of ultrathin graphene films with tunable thickness in enabling highly stable sodium metal anodes, Nano Lett., 17(2017), No. 11, p. 6808. doi: 10.1021/acs.nanolett.7b03071
    [18]
    X.Y. Zheng, C. Bommier, W. Luo, L.H. Jiang, Y.N. Hao, and Y.H. Huang, Sodium metal anodes for room-temperature sodium-ion batteries: Applications, challenges and solutions, Energy Storage Mater., 16(2019), p. 6. doi: 10.1016/j.ensm.2018.04.014
    [19]
    Z.X. Wang, Z.X. Huang, H. Wang, et al., 3D-printed sodiophilic V2CTx/rGO-CNT MXene microgrid aerogel for stable Na metal anode with high areal capacity, ACS Nano, 16(2022), No. 6, p. 9105. doi: 10.1021/acsnano.2c01186
    [20]
    X.M. Xia, X. Lv, Y. Yao, et al., A sodiophilic VN interlayer stabilizing a Na metal anode, Nanoscale Horiz., 7(2022), No. 8, p. 899. doi: 10.1039/D2NH00152G
    [21]
    J.L. Liang, W.W. Wu, L. Xu, and X.H. Wu, Highly stable Na metal anode enabled by a multifunctional hard carbon skeleton, Carbon, 176(2021), p. 219. doi: 10.1016/j.carbon.2021.01.144
    [22]
    Z.W. Sun, Y.D. Ye, J.W. Zhu, et al., Regulating sodium deposition through gradiently-graphitized framework for dendrite-free Na metal anode, Small, 18(2022), No. 18, art. No. 2107199. doi: 10.1002/smll.202107199
    [23]
    K. Yan, Z.D. Lu, H.W. Lee, et al., Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth, Nat. Energy, 1(2016), art. No. 16010. doi: 10.1038/nenergy.2016.10
    [24]
    S.A. Ferdousi, L.A. O’Dell, J. Sun, Y. Hora, M. Forsyth, and P.C. Howlett, High-performance cycling of Na metal anodes in phosphonium and pyrrolidinium fluoro(sulfonyl)imide based ionic liquid electrolytes, ACS Appl. Mater. Interfaces, 14(2022), No. 13, p. 15784. doi: 10.1021/acsami.1c24812
    [25]
    C.L. Wei, L.W. Tan, Y.C. Zhang, Z.R. Wang, J.K. Feng, and Y.T. Qian, Towards better Mg metal anodes in rechargeable Mg batteries: Challenges, strategies, and perspectives, Energy Storage Mater., 52(2022), p. 299. doi: 10.1016/j.ensm.2022.08.014
    [26]
    L.F. Zhao, Z. Hu, Z.Y. Huang, et al., In situ plating of Mg sodiophilic seeds and evolving sodium fluoride protective layers for superior sodium metal anodes, Adv. Energy Mater., 12(2022), No. 32, art. No. 2200990. doi: 10.1002/aenm.202200990
    [27]
    N. Shahverdi, A. Montazeri, A. Khavandi, H.R. Rezaei, and F. Saeedi, Fabrication of nanohydroxyapatite-chitosan coatings by pulse electrodeposition method, J. Inorg. Organomet. Polym. Mater., 32(2022), No. 12, p. 4649. doi: 10.1007/s10904-022-02468-w
    [28]
    B.S. Pan, Y.J. Yao, L. Peng, Q.X. Zhang, and Y. Yang, Ultrasound-assisted pulse electrodeposition of cobalt films, Mater. Chem. Phys., 241(2020), art. No. 122395. doi: 10.1016/j.matchemphys.2019.122395
    [29]
    T.A. Green, X. Su, and S. Roy, Pulse electrodeposition of copper in the presence of a corrosion reaction, J. Electrochem. Soc., 168(2021), No. 6, art. No. 062515. doi: 10.1149/1945-7111/ac0a21
    [30]
    B.Q. Cheng, X.J. Zhao, Y. Zhang, H.W. Chen, I. Polmear, and J.F. Nie, Co-segregation of Mg and Zn atoms at the planar η1-precipitate/Al matrix interface in an aged Al–Zn–Mg alloy, Scripta. Mater., 185(2020), p. 51. doi: 10.1016/j.scriptamat.2020.04.004
    [31]
    R. Davidson, A. Verma, D. Santos, et al., Mapping mechanisms and growth regimes of magnesium electrodeposition at high current densities, Mater. Horiz., 7(2020), No. 3, p. 843. doi: 10.1039/C9MH01367A
    [32]
    S. Tang, Y.Y. Zhang, X.G. Zhang, et al., Stable Na plating and stripping electrochemistry promoted by in situ construction of an alloy-based sodiophilic interphase, Adv. Mater., 31(2019), No. 16, art. No. 1807495. doi: 10.1002/adma.201807495
    [33]
    J.D. Wan, R. Wang, Z.X. Liu, et al., A double-functional additive containing nucleophilic groups for high-performance Zn-ion batteries, ACS Nano, 17(2023), No. 2, p. 1610. doi: 10.1021/acsnano.2c11357
    [34]
    Y. Li, M.H. Chen, B. Liu, Y. Zhang, X.Q. Liang, and X.H. Xia, Heteroatom doping: An effective way to boost sodium ion storage, Adv. Energy Mater., 10(2020), No. 27, art. No. 2000927. doi: 10.1002/aenm.202000927
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Share Article

    Article Metrics

    Article Views(496) PDF Downloads(28) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return