Haiyan Li, Yuzhao Wang, Fanqi Meng, Wei Mao, Xingzhong Cao, Yi Bian, Hao Zhang, Yong Jiang, Nuofu Chen, and Jikun Chen, Metal–organic decomposition growth of thin film metastable perovskite nickelates with kinetically improved quantum transitions, Int. J. Miner. Metall. Mater., 30(2023), No. 12, pp. 2441-2450. https://doi.org/10.1007/s12613-023-2703-9
Cite this article as:
Haiyan Li, Yuzhao Wang, Fanqi Meng, Wei Mao, Xingzhong Cao, Yi Bian, Hao Zhang, Yong Jiang, Nuofu Chen, and Jikun Chen, Metal–organic decomposition growth of thin film metastable perovskite nickelates with kinetically improved quantum transitions, Int. J. Miner. Metall. Mater., 30(2023), No. 12, pp. 2441-2450. https://doi.org/10.1007/s12613-023-2703-9
Research Article

Metal–organic decomposition growth of thin film metastable perovskite nickelates with kinetically improved quantum transitions

+ Author Affiliations
  • Corresponding author:

    Jikun Chen    E-mail: jikunchen@ustb.edu.cn

  • Received: 7 April 2023Revised: 19 June 2023Accepted: 5 July 2023Available online: 7 July 2023
  • The multiple quantum transitions within d-band correlation oxides such as rare-earth nickelates (RENiO3) triggered by critical temperatures and/or hydrogenation opened up a new paradigm for correlated electronics applications, e.g. ocean electric field sensor, bio-sensor, and neuron synapse logical devices. Nevertheless, these applications are obstructed by the present ineffectiveness in the thin film growth of the metastable RENiO3 with flexibly adjustable rare-earth compositions and electronic structures. Herein, we demonstrate a metal-organic decompositions (MOD) approach that can effectively grow metastable RENiO3 covering a large variety of the rare-earth composition without introducing any vacuum process. Unlike the previous chemical growths for RENiO3 relying on strict interfacial coherency that limit the film thickness, the MOD growth using reactive isooctanoate percussors is tolerant to lattice defects and therefore achieves comparable film thickness to vacuum depositions. Further indicated by positron annihilation spectroscopy, the RENiO3 grown by MOD exhibit large amount of lattice defects that improves their hydrogen incorporation amount and electron transfers, as demonstrated by the resonant nuclear reaction analysis and near edge X-ray absorption fine structure analysis. This effectively enlarges the magnitude in the resistance regulations in particular for RENiO3 with lighter RE, shedding a light on the extrinsic regulation of the hydrogen induced quantum transitions for correlated oxides semiconductors kinetically via defect engineering.
  • loading
  • Supplementary Information-10.1007s12613-023-2703-9.docx
  • [1]
    Z. Zhang, D. Schwanz, B. Narayanan, et al., Perovskite nickelates as electric-field sensors in salt water, Nature, 553(2018), No. 7686, p. 68. doi: 10.1038/nature25008
    Y. Zhou, X.F. Guan, H. Zhou, et al., Strongly correlated perovskite fuel cells, Nature, 534(2016), No. 7606, p. 231. doi: 10.1038/nature17653
    Y.F. Sun, M. Kotiuga, D. Lim, et al., Strongly correlated perovskite lithium ion shuttles, Proc. Natl. Acad. Sci. USA, 115(2018), No. 39, p. 9672. doi: 10.1073/pnas.1805029115
    J. Shi, Y. Zhou, and S. Ramanathan, Colossal resistance switching and band gap modulation in a perovskite nickelate by electron doping, Nat. Commun., 5(2014), art. No. 4860. doi: 10.1038/ncomms5860
    F. Zuo, P. Panda, M. Kotiuga, et al., Habituation based synaptic plasticity and organismic learning in a quantum perovskite, Nat. Commun., 8(2017), No. 1, art. No. 240. doi: 10.1038/s41467-017-00248-6
    H.T. Zhang, T.J. Park, I.A. Zaluzhnyy, et al., Perovskite neural trees, Nat. Commun., 11(2020), No. 1, art. No. 2245. doi: 10.1038/s41467-020-16105-y
    H.T. Zhang, F. Zuo, F. Li, et al., Perovskite nickelates as bio-electronic interfaces, Nat. Commun., 10(2019), No. 1, art. No. 1651. doi: 10.1038/s41467-019-09660-6
    H. Yoon, M. Choi, T.W. Lim, et al., Reversible phase modulation and hydrogen storage in multivalent VO2 epitaxial thin films, Nat. Mater., 15(2016), No. 10, p. 1113. doi: 10.1038/nmat4692
    N.P. Lu, P.F. Zhang, Q.H. Zhang, et al., Electric-field control of tri-state phase transformation with a selective dual-ion switch, Nature, 546(2017), No. 7656, p. 124. doi: 10.1038/nature22389
    Z.X. Wei, Z.Y. Wang, C.Q. Xu, et al., Defect-induced insulator-metal transition and negative permittivity in La1−xBaxCoO3 perovskite structure, J. Mater. Sci. Technol., 112(2022), p. 77. doi: 10.1016/j.jmst.2021.11.002
    S.J. Fang, Z.Y. Pang, F.G. Wang, L. Lin, and S.H. Han, Annealing effect on transport and magnetic properties of La0.67Sr0.33MnO3 thin films grown on glass substrates by RF magnetron sputtering, J. Mater. Sci. Technol., 27(2011), No. 3, p. 223. doi: 10.1016/S1005-0302(11)60053-4
    X.F. Zhou, Z.R. Jia, A.L. Feng, et al., Synthesis of fish skin-derived 3D carbon foams with broadened bandwidth and excellent electromagnetic wave absorption performance, Carbon, 152(2019), p. 827. doi: 10.1016/j.carbon.2019.06.080
    H.J. Wu, G.L. Wu, and L.D. Wang, Peculiar porous α-Fe2O3, γ-Fe2O3 and Fe3O4 nanospheres: Facile synthesis and electromagnetic properties, Powder Technol., 269(2015), p. 443. doi: 10.1016/j.powtec.2014.09.045
    G. Catalan, Progress in perovskite nickelate research, Phase Transitions, 81(2008), No. 7-8, p. 729. doi: 10.1080/01411590801992463
    J.K. Chen, H.Y. Hu, J.O. Wang, et al., Overcoming synthetic metastabilities and revealing metal-to-insulator transition & thermistor bi-functionalities for d-band correlation perovskite nickelates, Mater. Horiz., 6(2019), No. 4, p. 788. doi: 10.1039/C9MH00008A
    J.R. Li, R.J. Green, Z. Zhang, et al., Sudden collapse of magnetic order in oxygen-deficient nickelate films, Phys. Rev. Lett., 126(2021), No. 18, art. No. 187602. doi: 10.1103/PhysRevLett.126.187602
    R. Jaramillo, S.D. Ha, D.M. Silevitch, and S. Ramanathan, Origins of bad-metal conductivity and the insulator-metal transition in the rare-earth nickelates, Nat. Phys., 10(2014), No. 4, p. 304. doi: 10.1038/nphys2907
    J.S. Zhou, J.B. Goodenough, and B. Dabrowski, Pressure-induced non-fermi-liquid behavior of PrNiO3, Phys. Rev. Lett., 94(2005), No. 22, art. No. 226602. doi: 10.1103/PhysRevLett.94.226602
    I.I. Mazin, D.I. Khomskii, R. Lengsdorf, et al., Charge ordering as alternative to Jahn–Teller distortion, Phys. Rev. Lett., 98(2007), No. 17, art. No. 176406. doi: 10.1103/PhysRevLett.98.176406
    D. Li, K. Lee, B.Y. Wang, et al., Superconductivity in an infinite-layer nickelate, Nature, 572(2019), No. 7771, p. 624. doi: 10.1038/s41586-019-1496-5
    J.K. Chen, W. Mao, L. Gao, et al., Electron-doping mottronics in strongly correlated perovskite, Adv. Mater., 32(2020), No. 6, art. No. 1905060. doi: 10.1002/adma.201905060
    H. Lu, M. Rossi, A. Nag, et al., Magnetic excitations in infinite-layer nickelates, Science, 373(2021), No. 6551, p. 213. doi: 10.1126/science.abd7726
    E. Been, W.S. Lee, H.Y. Hwang, et al., Electronic structure trends across the rare-earth series in superconducting infinite-layer nickelates, Phys. Rev. X, 11(2021), No. 1, art. No. 011050. doi: 10.1103/PhysRevX.11.011050
    H.F. Li, F.Q. Meng, Y. Bian, et al., Frequency regulation in alternation-current transports across metal to insulator transitions of thin film correlated perovskite nickelates, J. Mater. Sci. Technol., 148(2023), p. 235. doi: 10.1016/j.jmst.2022.11.026
    R. Jaramillo, F. Schoofs, S.D. Ha and S. Ramanathan, High pressure synthesis of SmNiO3 thin films and implications for thermodynamics of the nickelates, J. Mater. Chem. C, 1(2013), No. 13, p. 2455. doi: 10.1039/c3tc00844d
    N. Shukla, T. Joshi, S. Dasgupta, P. Borisov, D. Lederman, and S. Datta, Electrically induced insulator to metal transition in epitaxial SmNiO3 thin films, Appl. Phys. Lett., 105(2014), No. 1, art. No. 012108. doi: 10.1063/1.4890329
    A. Ambrosini and J.F. Hamet, SmxNd1–x NiO3 thin-film solid solutions with tunable metal–insulator transition synthesized by alternate-target pulsed-laser deposition, Appl. Phys. Lett., 82(2003), No. 5, p. 727. doi: 10.1063/1.1541116
    J. Shi, S.D. Ha, Y. Zhou, F. Schoofs, and S. Ramanathan, A correlated nickelate synaptic transistor, Nat. Commun., 4(2013), art. No. 2676. doi: 10.1038/ncomms3676
    F.Y. Bruno, K.Z. Rushchanskii, S. Valencia, et al., Rationalizing strain engineering effects in rare-earth nickelates, Phys. Rev. B, 88(2013), No. 19, art. No. 195108. doi: 10.1103/PhysRevB.88.195108
    F. Conchon, A. Boulle, R. Guinebretière, et al., Effect of tensile and compressive strains on the transport properties of SmNiO3 layers epitaxially grown on (001) SrTiO3 and LaAlO3 substrates, Appl. Phys. Lett., 91(2007), No. 19, art. No. 192110. doi: 10.1063/1.2800306
    R.W. Vest, Metallo-organic decomposition (MOD) processing of ferroelectric and electro-optic films: A review, Ferroelectrics, 102(1990), No. 1, p. 53. doi: 10.1080/00150199008221465
    G.M. Vest and S. Singaram, Synthesis of metallo-organic compounds for mod powders and films, MRS Online Proc. Libr., 60(1985), No. 1, p. 35.
    I.V. Nikulin, M.A. Novojilov, A.R. Kaul, S.N. Mudretsova, and S.V. Kondrashov, Oxygen nonstoichiometry of NdNiO3−δ and SmNiO3−δ, Mater. Res. Bull., 39(2004), No. 6, p. 775. doi: 10.1016/j.materresbull.2004.02.005
    M.T. Escote, A.M.L. da Silva, J.R. Matos, and R.F. Jardim, General properties of polycrystalline LnNiO3 (Ln = Pr, Nd, Sm) compounds prepared through different precursors, J. Solid State Chem., 151(2000), No. 2, p. 298. doi: 10.1006/jssc.2000.8657
    J.K. Chen, H.Y. Hu, J.O. Wang, et al., A d-band electron correlated thermoelectric thermistor established in metastable perovskite family of rare-earth nickelates, ACS Appl. Mater. Interfaces, 11(2019), No. 37, p. 34128. doi: 10.1021/acsami.9b12609
    B.Y. Wang, Y.Y. Ma, Z. Zhang, R.S. Yu, and P. Wang, Performance of the Beijing pulsed variable-energy positron beam, Appl. Surf. Sci., 255(2008), No. 1, p. 119. doi: 10.1016/j.apsusc.2008.05.183
    Y. Bian, H.Y. Li, F.B. Yan, et al., Hydrogen induced electronic transition within correlated perovskite nickelates with heavy rare-earth composition, Appl. Phys. Lett., 120(2022), No. 9, art. No. 092103. doi: 10.1063/5.0082917
    J.K. Chen, Y. Zhou, S. Middey, et al., Self-limited kinetics of electron doping in correlated oxides, Appl. Phys. Lett., 107(2015), No. 3, art. No. 031905. doi: 10.1063/1.4927322
    K. Kleiner, J. Melke, M. Merz, et al., Unraveling the degradation process of LiNi0.8Co0.15Al0.05O2 electrodes in commercial lithium ion batteries by electronic structure investigations, ACS Appl. Mater. Interfaces, 7(2015), No. 35, p. 19589. doi: 10.1021/acsami.5b03191
    L.A. Montoro, M. Abbate, and J.M. Rosolen, Electronic structure of transition metal ions in deintercalated and reintercalated LiCo0.5Ni0.5O2, J. Electrochem. Soc., 147(2000), No. 5, art. No. 1651. doi: 10.1149/1.1393412
    H. Kobayashi, M. Shikano, S. Koike, H. Sakaebe, and K. Tatsumi, Investigation of positive electrodes after cycle testing of high-power Li-ion battery cells, J. Power Sources, 174(2007), No. 2, p. 380. doi: 10.1016/j.jpowsour.2007.06.134
    M. Wilde and K. Fukutani, Hydrogen detection near surfaces and shallow interfaces with resonant nuclear reaction analysis, Surf. Sci. Rep., 69(2014), No. 4, p. 196. doi: 10.1016/j.surfrep.2014.08.002
    J.K. Chen, W. Mao, B.H. Ge, et al., Revealing the role of lattice distortions in the hydrogen-induced metal-insulator transition of SmNiO3, Nat. Commun., 10(2019), No. 1, art. No. 694. doi: 10.1038/s41467-019-08613-3
    W. Mao, M. Wilde, T. Chikada, et al., Fabrication and hydrogen permeation properties of epitaxial Er2O3 films revealed by nuclear reaction analysis, J. Phys. Chem. C, 120(2016), No. 28, p. 15147. doi: 10.1021/acs.jpcc.6b02864
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Share Article

    Article Metrics

    Article Views(689) PDF Downloads(63) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint