Qiang Su, Hanqun Wang, Yunfei He, Dongdong Liu, Xiaoxiao Huang,  and Bo Zhong, Preparation of CIP@TiO2 composite with broadband electromagnetic wave absorption properties, Int. J. Miner. Metall. Mater., 31(2024), No. 1, pp. 197-205. https://doi.org/10.1007/s12613-023-2707-5
Cite this article as:
Qiang Su, Hanqun Wang, Yunfei He, Dongdong Liu, Xiaoxiao Huang,  and Bo Zhong, Preparation of CIP@TiO2 composite with broadband electromagnetic wave absorption properties, Int. J. Miner. Metall. Mater., 31(2024), No. 1, pp. 197-205. https://doi.org/10.1007/s12613-023-2707-5
Research Article

Preparation of CIP@TiO2 composite with broadband electromagnetic wave absorption properties

+ Author Affiliations
  • Corresponding author:

    Bo Zhong    E-mail: zhongbo@hit.edu.cn

  • Received: 20 April 2023Revised: 10 July 2023Accepted: 11 July 2023Available online: 13 July 2023
  • Scholars aim for the improved impedance matching (Z) of materials while maintaining their excellent wave absorption properties. Based on the hydrolysis characteristics of isopropyl titanate, a simple preparation process for the coating of carbonyl iron powder (CIP) with TiO2 was designed. Given the TiO2 coating, the Z of the CIP@TiO2 composite was adjusted well by decreasing the dielectric constant. Moreover, the interfacial polarization of CIP@TiO2 was enhanced. Ultimately, the electromagnetic-wave (EMW) absorption property of the CIP@TiO2 composite was improved substantially, the minimum reflection loss reached −46.07 dB, and the effective absorption bandwidth can reach 8 GHz at the composite thickness of 1.5 mm. Moreover, compared with CIP, the oxidation resistance of CIP@TiO2 showed remarkable improvement. The results revealed that the oxidation starting temperature of CIP@TiO2 was about 400°C, whereas the uncoated CIP had an oxidation starting temperature of approximately 250°C. Moreover, the largest oxidation rate temperature of CIP@TiO2 increased to around 550°C. This work opens up a novel strategy for the production of high-performance EMW absorbers via structural design.
  • loading
  • [1]
    X.F. Xu, G.Z. Wang, G.P. Wan, et al., Magnetic Ni/graphene connected with conductive carbon nano-onions or nanotubes by atomic layer deposition for lightweight and low-frequency microwave absorption, Chem. Eng. J., 382(2020), art. No. 122980. doi: 10.1016/j.cej.2019.122980
    [2]
    Z.G. Gao, K. Yang, Z.H. Zhao, et al., Design principles in MOF-derived electromagnetic wave absorption materials: Review and perspective, Int. J. Miner. Metall. Mater., 30(2023), No. 3, pp. 405-427. doi: 10.1007/s12613-022-2555-8
    [3]
    S.J. Zhang, J.Y. Li, X.T. Jin, et al., Current advances of transition metal dichalcogenides in electromagnetic wave absorption: A brief review, Int. J. Miner. Metall. Mater., 30(2023), No. 3, pp. 428-445. doi: 10.1007/s12613-022-2546-9
    [4]
    H. Sun, R.C. Che, X. You, et al., Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities, Adv. Mater., 26(2014), No. 48, p. 8120. doi: 10.1002/adma.201403735
    [5]
    Y.F. Zhang, A.M. Bu, Y. Xiang, et al., Rapid synthesis of scaly SiO2 coating on flake carbonyl iron powders by plasma electrolysis, Mater. Sci. Eng. B, 262(2020), art. No. 114703. doi: 10.1016/j.mseb.2020.114703
    [6]
    Q.L. Chen, L.Y. Li, Z.L. Wang, Y.C. Ge, C.S. Zhou, and J.H. Yi, Synthesis and enhanced microwave absorption performance of CIP@ SiO2@Mn0.6Zn0.4Fe2O4 ferrite composites, J. Alloys Compd., 779(2019), p. 720. doi: 10.1016/j.jallcom.2018.11.112
    [7]
    Y.T. Zhao, L. Liu, J.N. Han, W.H. Wu, and G.X. Tong, Effective modulation of electromagnetic characteristics by composition and size in expanded graphite/Fe3O4 nanoring composites with high Snoek’s limit, J. Alloys Compd., 728(2017), p. 100. doi: 10.1016/j.jallcom.2017.08.238
    [8]
    H. Xie, Y.Y. Zhou, Z.W. Ren, X. Wei, S.P. Tao, and C.Q. Yang, Enhancement of electromagnetic interference shielding and heat-resistance properties of silver-coated carbonyl iron powders composite material, J. Magn. Magn. Mater., 499(2020), art. No. 166244. doi: 10.1016/j.jmmm.2019.166244
    [9]
    P.C. Ji, G.Z. Xie, N.Y. Xie, et al., Fabrication and microwave absorption properties of the flaky carbonyl iron/FeSiAl composite in S-band, J. Mater. Sci. Mater. Electron., 29(2018), No. 6, p. 4711. doi: 10.1007/s10854-017-8423-z
    [10]
    X.L. Guo, Z.J. Yao, H.Y. Lin, et al., Epoxy resin addition on the microstructure, thermal stability and microwave absorption properties of core–shell carbonyl iron@epoxy composites, J. Magn. Magn. Mater., 485(2019), p. 244. doi: 10.1016/j.jmmm.2019.04.059
    [11]
    X.Q. Chen, Z. Wu, Z.L. Zhang, L.Y. Heng, S. Wang, and Y.H. Zou, Impedance matching for omnidirectional and polarization insensitive broadband absorber based on carbonyl iron powders, J. Magn. Magn. Mater., 476(2019), p. 349. doi: 10.1016/j.jmmm.2018.12.054
    [12]
    L.Y. Yang, L.H. Yin, C.Q. Hong, S. Dong, C. Liu, and X.H. Zhang, Strong and thermostable hydrothermal carbon coated 3D needled carbon fiber reinforced silicon–boron carbonitride composites with broadband and tunable high-performance microwave absorption, J. Colloid Interface Sci., 582(2021), p. 270. doi: 10.1016/j.jcis.2020.08.030
    [13]
    J.J. Ding, L. Wang, Y.H. Zhao, et al., Boosted interfacial polarization from multishell TiO2 @Fe3O4 @PPy heterojunction for enhanced microwave absorption, Small, 15(2019), No. 36, art. No. e1902885. doi: 10.1002/smll.201902885
    [14]
    L.Q. Yue, B. Zhong, L. Xia, T. Zhang, Y.L. Yu, and X.X. Huang, Three-dimensional network-like structure formed by silicon coated carbon nanotubes for enhanced microwave absorption, J. Colloid Interface Sci., 582(2021), p. 177. doi: 10.1016/j.jcis.2020.08.024
    [15]
    H.Q. Wang, M. Wang, X.C. Zhang, et al., A new type of catalyst allows carbonyl iron powder to be coated with SiO2 for tuned microwave absorption, Surf. Interfaces, 21(2020), art. No. 100755. doi: 10.1016/j.surfin.2020.100755
    [16]
    Z. Komeily-Nia, M. Montazer, S.S.S. Aye, and B. Nasri-Nasrabadi, A practical approach to load CuO/MnO2 core/shell nanostructures on textiles through in situ wet chemical synthesis, Colloids Surf. A: Physicochem. Eng. Aspects, 583(2019), art. No. 123998. doi: 10.1016/j.colsurfa.2019.123998
    [17]
    M.T. Qiao, X.F. Lei, Y. Ma, et al., Facile synthesis and enhanced electromagnetic microwave absorption performance for porous core–shell Fe3O4@MnO2 composite microspheres with lightweight feature, J. Alloys Compd., 693(2017), p. 432. doi: 10.1016/j.jallcom.2016.09.181
    [18]
    R.L. Gao, Z.H. Wang, G. Chen, X.L. Deng, W. Cai, and C.L. Fu, Influence of core size on the multiferroic properties of CoFe2O4@BaTiO3 core shell structured composites, Ceram. Int., 44(2018), p. S84. doi: 10.1016/j.ceramint.2018.08.234
    [19]
    G.M. Shi, Y.F. Li, L. Ai, and F.N. Shi, Two step synthesis and enhanced microwave absorption properties of polycrystalline BaTiO3 coated Ni nanocomposites, J. Alloys Compd., 680(2016), p. 735. doi: 10.1016/j.jallcom.2016.04.131
    [20]
    B. Zhong, Y.J. Cheng, M. Wang, et al., Three dimensional hexagonal boron nitride nanosheet/carbon nanotube composites with light weight and enhanced microwave absorption performance, Compos. Part A: Appl. Sci. Manuf., 112(2018), p. 515. doi: 10.1016/j.compositesa.2018.07.009
    [21]
    Q. Su, D.D. Liu, C.Y. Wang, L. Xia, X.X. Huang, and B. Zhong, Graphene/BN/Fe/BN nanocomposites for highly efficient electromagnetic wave absorption, ACS Appl. Nano Mater., 5(2022), No. 10, p. 15902. doi: 10.1021/acsanm.2c04129
    [22]
    D.T. Kuang, L.Z. Hou, S.L. Wang, et al., Facile synthesis of Fe/Fe3C–C core–shell nanoparticles as a high-efficiency microwave absorber, Appl. Surf. Sci., 493(2019), p. 1083. doi: 10.1016/j.apsusc.2019.07.073
    [23]
    C. Fu, D.W. He, Y.S. Wang, and X. Zhao, Facile synthesis and microwave absorption performance of coated carbon nanotubes by porous Fe3O4@C nanorods, Synth. Met., 248(2019), p. 76. doi: 10.1016/j.synthmet.2018.12.020
    [24]
    W.Y. Jang, S. Mallesh, S.B. Lee, and K.H. Kim, Microwave absorption properties of core–shell structured FeCoNi@PMMA filled in composites, Curr. Appl. Phys., 20(2020), No. 4, p. 525. doi: 10.1016/j.cap.2020.01.019
    [25]
    A.A. Mahani, S. Motahari, and V. Nayyeri, Electromagnetic and microwave absorption characteristics of PMMA composites filled with a nanoporous resorcinol formaldehyde based carbon aerogel, RSC Adv., 8(2018), No. 20, p. 10855. doi: 10.1039/C8RA00196K
    [26]
    H.Y. Yan, Y.Q. Fu, X.M. Wu, X.X. Xue, C. Li, and L. Zhang, Core–shell structured NaTi2(PO4)3@polyaniline as an efficient electrode material for electrochemical energy storage, Solid State Ion., 336(2019), p. 95. doi: 10.1016/j.ssi.2019.03.024
    [27]
    A.F. Zhu, H.L. Xing, Q. Fan, X.L. Ji, and P. Yang, Conductive polyaniline coated on aluminum substrate as bi-functional materials with high-performance microwave absorption and low infrared emissivity, Synth. Met., 271(2021), art. No. 116640. doi: 10.1016/j.synthmet.2020.116640
    [28]
    J. Xu, Z.H. Liu, J.Q. Wang, et al., Preparation of core–shell C@TiO2 composite microspheres with wrinkled morphology and its microwave absorption, J. Colloid Interface Sci., 607(2022), p. 1036. doi: 10.1016/j.jcis.2021.09.038
    [29]
    P.B. Liu, Y. Huang, J. Yan, and Y. Zhao, Magnetic graphene@PANI@porous TiO2 ternary composites for high-performance electromagnetic wave absorption, J. Mater. Chem. C, 4(2016), No. 26, p. 6362. doi: 10.1039/C6TC01718E
    [30]
    J. Qiao, X. Zhang, C. Liu, et al., Facile fabrication of Ni embedded TiO2/C core–shell ternary nanofibers with multicomponent functional synergy for efficient electromagnetic wave absorption, Compos. Part B: Eng., 200(2020), art. No. 108343. doi: 10.1016/j.compositesb.2020.108343
    [31]
    C. Chen, Q.H. Liu, H. Bi, W.B. You, W. She, and R.C. Che, Fabrication of hierarchical TiO2 coated Co20Ni80 particles with tunable core sizes as high-performance wide-band microwave absorbers, Phys. Chem. Chem. Phys., 18(2016), No. 38, p. 26712. doi: 10.1039/C6CP04081K
    [32]
    P. Arora, A. Fermah, J.K. Rajput, H. Singh, and J. Badhan, Efficient solar light-driven degradation of Congo red with novel Cu-loaded Fe3O4@TiO2 nanoparticles, Environ. Sci. Pollut. Res. Int., 24(2017), No. 24, p. 19546. doi: 10.1007/s11356-017-9571-7
    [33]
    J.L. Wei, A. Ostadhossein, S.Q. Li, and M. Ihme, Kinetics for the hydrolysis of Ti(OC3H7)4: A molecular dynamics simulation study, Proc. Combust. Inst., 38(2021), No. 1, p. 1433. doi: 10.1016/j.proci.2020.06.345
    [34]
    D.N. Chen, K.L. Li, H.Y. Yu, et al., Effects of secondary particle size distribution on the magnetic properties of carbonyl iron powder cores, J. Magn. Magn. Mater., 497(2020), art. No. 166062. doi: 10.1016/j.jmmm.2019.166062
    [35]
    C.W. Zhang, Y. Peng, T.L. Zhang, W.B. Guo, Y. Yuan, and Y.B. Li, In situ dual-template method of synthesis of inverse-opal Co3O4@TiO2 with wideband microwave absorption, Inorg. Chem., 60(2021), No. 23, p. 18455. doi: 10.1021/acs.inorgchem.1c03035
    [36]
    M. He, Q. Liao, Y.M. Zhou, et al., Lightweight TiO2@C/carbon fiber aerogels prepared from Ti3C2Tx/cotton for high-efficiency microwave absorption, Langmuir, 38(2022), No. 3, p. 945. doi: 10.1021/acs.langmuir.1c02237
    [37]
    D.Q. Zhang, Y.F. Xiong, J.Y. Cheng, et al., Construction of low-frequency and high-efficiency electromagnetic wave absorber enabled by texturing rod-like TiO2 on few-layer of WS2 nanosheets, Appl. Surf. Sci., 548(2021), art. No. 149158. doi: 10.1016/j.apsusc.2021.149158
    [38]
    S.K.M. Jamari, N.A. Nordin, U. Ubaidillah, S.A.A. Aziz, S.A. Mazlan, and N. Nazmi, Enhancement of the rheological properties of magnetorheological elastomer via polystyrene-grafted carbonyl iron particles, J. Appl. Polym. Sci., 138(2021), No. 34, art. No. 50860. doi: 10.1002/app.50860
    [39]
    X. Li, C.Y. Wen, L.T. Yang, R.X. Zhang, Y.S. Li, and R.C. Che, Enhanced visualizing charge distribution of 2D/2D MXene/MoS2 heterostructure for excellent microwave absorption performance, J. Alloys Compd., 869(2021), art. No. 159365. doi: 10.1016/j.jallcom.2021.159365
    [40]
    C.W. Qiang, J.C. Xu, Z.Q. Zhang, et al., Magnetic properties and microwave absorption properties of carbon fibers coated by Fe3O4 nanoparticles, J. Alloys Compd., 506(2010), No. 1, p. 93. doi: 10.1016/j.jallcom.2010.06.193
    [41]
    Z. Zhang, H.Q. Zhao, W.H. Gu, L.J. Yang, and B.S. Zhang, A biomass derived porous carbon for broadband and lightweight microwave absorption, Sci. Rep., 9(2019), No. 1, art. No. 18617. doi: 10.1038/s41598-019-54104-2
    [42]
    Y.L. Yu, M. Wang, Y.Q. Bai, et al., Tuning the inner hollow structure of lightweight amorphous carbon for enhanced microwave absorption, Chem. Eng. J., 375(2019), art. No. 121914. doi: 10.1016/j.cej.2019.121914
    [43]
    Y. Liu, Y.N. Li, K.D. Jiang, G.X. Tong, T.X. Lv, and W.H. Wu, Controllable synthesis of elliptical Fe3O4@C and Fe3O4/Fe@C nanorings for plasmon resonance-enhanced microwave absorption, J. Mater. Chem. C, 4(2016), No. 30, p. 7316. doi: 10.1039/C6TC01737A
    [44]
    X.X. Sun, M.L. Yang, S. Yang, et al., Ultrabroad band microwave absorption of carbonized waxberry with hierarchical structure, Small, 15(2019), No. 43, art. No. 1902974. doi: 10.1002/smll.201902974
    [45]
    M. Yu, Y. Huang, X.D. Liu, X.X. Zhao, W.Q. Fan, and K.H. She, In situ modification of MXene nanosheets with polyaniline nanorods for lightweight and broadband electromagnetic wave absorption, Carbon, 208(2023), p. 311. doi: 10.1016/j.carbon.2023.03.066
    [46]
    K.S. Sista, S. Dwarapudi, D. Kumar, G.R. Sinha, and A.P. Moon, Carbonyl iron powders as absorption material for microwave interference shielding: A review, J. Alloys Compd., 853(2021), art. No. 157251. doi: 10.1016/j.jallcom.2020.157251
    [47]
    X.D. Liu, S. Zhang, M. Yu, et al., WS2 nanosheets anchored on N-doped carbon fibers for superior electromagnetic wave absorption, Chem. Eng. J., 465(2023), art. No. 142932. doi: 10.1016/j.cej.2023.142932
    [48]
    C.M. Gao, T. Wei, Y.Y. Zhang, et al., A photoresponsive rutile TiO2 heterojunction with enhanced electron–hole separation for high-performance hydrogen evolution, Adv. Mater., 31(2019), No. 8, art. No. 1806596. doi: 10.1002/adma.201806596
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Share Article

    Article Metrics

    Article Views(452) PDF Downloads(18) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return