Cite this article as: |
Shaolong Sheng, Yanxin Qiao, Ruzong Zhai, Mingyue Sun, and Bin Xu, Processing map and dynamic recrystallization behaviours of 316LN-Mn austenitic stainless steel, Int. J. Miner. Metall. Mater., 30(2023), No. 12, pp. 2386-2396. https://doi.org/10.1007/s12613-023-2714-6 |
Yanxin Qiao E-mail: yxqiao@just.edu.cn
Mingyue Sun E-mail: mysun@imr.ac.cn
[1] |
B.F. Guo, H.P. Ji, X.G. Liu, et al., Research on flow stress during hot deformation process and processing map for 316LN austenitic stainless steel, J. Mater. Eng. Perform., 21(2012), No. 7, p. 1455. doi: 10.1007/s11665-011-0031-0
|
[2] |
Y.X. Qiao, Z.B. Zheng, H.K. Yang, J. Long, and P.X. Han, Recent progress in microstructural evolution, mechanical and corrosion properties of medium-Mn steel, J. Iron Steel Res. Int., 30(2023), No. 8, p. 1463. doi: 10.1007/s42243-023-00974-w
|
[3] |
K. Hamada, H. Nakajima, K. Kawano, K. Takano, F. Tsutsumi, and K. Okuno, Demonstration of full scale JJ1 and 316LN fabrication for ITER TF coil structure, Fusion Eng. Des., 82(2007), No. 5-14, p. 1481. doi: 10.1016/j.fusengdes.2007.07.032
|
[4] |
Y.S. Li, Y.W. Dong, Z.H. Jiang, Q.F. Tang, S.Y. Du, and Z.W. Hou, Influence of rare earth Ce on hot deformation behavior of as-cast Mn18Cr18N high nitrogen austenitic stainless steel, Int. J. Miner. Metall. Mater., 30(2023), No. 2, p. 324. doi: 10.1007/s12613-021-2355-6
|
[5] |
L.B. Yang, X.N. Ren, C. Cai, et al., Effect of the capsule on deformation and densification behavior of nickel-based superalloy compact during hot isostatic pressing, Int. J. Miner. Metall. Mater., 30(2023), No. 1, p. 122. doi: 10.1007/s12613-021-2349-4
|
[6] |
Z.X. Yu, B.J. Xie, Z.W. Zhu, B. Xu, and M.Y. Sun, High-temperature deformation behavior and processing maps of a novel AlNbTi3VZr1.5 refractory high entropy alloy, J. Alloys Compd., 912(2022), art. No. 165220. doi: 10.1016/j.jallcom.2022.165220
|
[7] |
C.M. Li, L. Huang, M.J. Zhao, S.Q. Guo, Y. Su, and J.J. Li, Characterization of hot workability of Ti–6Cr–5Mo–5V–4Al alloy based on hot processing map and microstructure evolution, J. Alloys Compd., 905(2022), art. No. 164161. doi: 10.1016/j.jallcom.2022.164161
|
[8] |
B.N. Sahoo and S.K. Panigrahi, Deformation behavior and processing map development of AZ91 Mg alloy with and without addition of hybrid in-situ TiC+TiB2 reinforcement, J. Alloys Compd., 776(2019), p. 865. doi: 10.1016/j.jallcom.2018.10.276
|
[9] |
M. Chegini, M.R. Aboutalebi, S.H. Seyedein, G.R. Ebrahimi, and M. Jahazi, Study on hot deformation behavior of AISI 414 martensitic stainless steel using 3D processing map, J. Manuf. Process., 56(2020), p. 916. doi: 10.1016/j.jmapro.2020.05.008
|
[10] |
S. Venugopal, S. Venugopal, P.V. Sivaprasad, et al., Validation of processing maps for 304L stainless steel using hot forging, rolling and extrusion, J. Mater. Process. Technol., 59(1996), No. 4, p. 343. doi: 10.1016/0924-0136(95)02160-4
|
[11] |
Y. Han, G.W. Liu, D.N. Zou, R. Liu, and G.J. Qiao, Deformation behavior and microstructural evolution of as-cast 904L austenitic stainless steel during hot compression, Mater. Sci. Eng. A, 565(2013), p. 342. doi: 10.1016/j.msea.2012.12.043
|
[12] |
T. Xi, C.G. Yang, M. Babar Shahzad, and K. Yang, Study of the processing map and hot deformation behavior of a Cu-bearing 317LN austenitic stainless steel, Mater. Des., 87(2015), p. 303. doi: 10.1016/j.matdes.2015.08.011
|
[13] |
H.Y. Sun, Y.D. Sun, R.Q. Zhang, M. Wang, R. Tang, and Z.J. Zhou, Study on hot workability and optimization of process parameters of a modified 310 austenitic stainless steel using processing maps, Mater. Des., 67(2015), p. 165. doi: 10.1016/j.matdes.2014.11.041
|
[14] |
X.G. Liu, H.P. Ji, H. Guo, M. Jin, B.F. Guo, and L. Gao, Study on hot deformation behaviour of 316LN austenitic stainless steel based on hot processing map, Mater. Sci. Technol., 29(2013), No. 1, p. 24. doi: 10.1179/1743284712Y.0000000083
|
[15] |
S. Venugopal and P.V. Sivaprasad, A journey with prasad’s processing maps, J. Mater. Eng. Perform., 12(2003), No. 6, p. 674. doi: 10.1361/105994903322692475
|
[16] |
M.L. Saucedo-Muñoz and V.M. Lopez-Hirata, Precipitation in aged N-containing steels, Solid State Phenom., 172-174(2011), p. 437. doi: 10.4028/www.scientific.net/SSP.172-174.437
|
[17] |
M.L. Saucedo-Muñoz, T. Hashida, Y. Watanabe, T. Shoji, and V.M. Lopez-Hirata, Effect of precipitation on cryogenic toughness in N-containing austenitic stainless steels, Mater. Sci. Forum, 539-543(2007), p. 4914. doi: 10.4028/www.scientific.net/MSF.539-543.4914
|
[18] |
X. Hu, Z.Y. Wang, L. Wang, C. Chen, F.C. Zhang, and W. Zhang, Effect of pre-deformation on hot workability of super austenitic stainless steel, J. Mater. Res. Technol., 16(2022), p. 238. doi: 10.1016/j.jmrt.2021.11.163
|
[19] |
D.J. Long, S.Y. Qiu, W.B. Liu, et al., Hot deformation behavior and microstructure features of FeCrAl–ODS alloy, J. Iron Steel Res. Int., 29(2022), No. 9, p. 1455. doi: 10.1007/s42243-021-00733-9
|
[20] |
H.K. Yang, Y.Z. Tian, Z.J. Zhang, and Z.F. Zhang, Simultaneously improving the strength and ductility of Fe–22Mn–0.6C twinning-induced plasticity steel via nitrogen addition, Mater. Sci. Eng. A, 715(2018), p. 276. doi: 10.1016/j.msea.2018.01.019
|
[21] |
K.L. Murty, F.A. Mohamed, and J.E. Dorn, Viscous glide, dislocation climb and Newtonian viscous deformation mechanisms of high temperature creep in Al–3Mg, Acta Metall., 20(1972), No. 8, p. 1009. doi: 10.1016/0001-6160(72)90135-6
|
[22] |
S.L. Wang, M.X. Zhang, H.C. Wu, and B. Yang, Study on the dynamic recrystallization model and mechanism of nuclear grade 316LN austenitic stainless steel, Mater. Charact., 118(2016), p. 92. doi: 10.1016/j.matchar.2016.05.015
|
[23] |
S.I. Kim, Y. Lee, and B.L. Jang, Modeling of recrystallization and austenite grain size for AISI 316 stainless steel and its application to hot bar rolling, Mater. Sci. Eng. A, 357(2003), No. 1-2, p. 235. doi: 10.1016/S0921-5093(03)00165-5
|
[24] |
Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, et al., Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242, Metall. Trans. A, 15(1984), No. 10, p. 1883. doi: 10.1007/BF02664902
|
[25] |
K. Ma, Z.Y. Liu, S. Bi, X.X. Zhang, B.L. Xiao, and Z.Y. Ma, Microstructure evolution and hot deformation behavior of carbon nanotube reinforced 2009Al composite with bimodal grain structure, J. Mater. Sci. Technol., 70(2021), p. 73. doi: 10.1016/j.jmst.2020.09.003
|
[26] |
L. Wang, Z.Y. Li, X. Hu, B. Lv, C. Chen, and F.C. Zhang, Hot deformation behavior and 3D processing map of super austenitic stainless steel containing 7Mo-0.46N–0.02Ce: Effect of the solidification direction orientation of columnar crystal to loading direction, J. Mater. Res. Technol., 13(2021), p. 618. doi: 10.1016/j.jmrt.2021.05.006
|
[27] |
M.H. Jang, J.Y. Kang, J.H. Jang, T.H. Lee, and C. Lee, Hot deformation behavior and microstructural evolution of alumina-forming austenitic heat-resistant steels during hot compression, Mater. Charact., 123(2017), p. 207. doi: 10.1016/j.matchar.2016.11.038
|
[28] |
R. Mahdavi, E. Emadoddin, and S.M. Abbasi, Effect of initial microstructure and strain rate on the hot deformation behavior of ATI425 alloy in two-phase α/β region, J. Mater. Eng. Perform., 31(2022), No. 6, p. 5118. doi: 10.1007/s11665-022-06600-2
|
[29] |
S.P. Xi, X.L. Gao, W. Liu, et al., Hot deformation behavior and processing map of low-alloy offshore steel, J. Iron Steel Res. Int., 29(2022), No. 3, p. 474. doi: 10.1007/s42243-021-00603-4
|
[30] |
S.V.S. Narayana Murty and B. Nageswara Rao, Ziegler’s criterion on the instability regions in processing maps, J. Mater. Sci. Lett., 17(1998), p. 1203. doi: 10.1023/A:1006541710533
|
[31] |
Y.B. Tan, Y.H. Ma, and F. Zhao, Hot deformation behavior and constitutive modeling of fine grained Inconel 718 superalloy, J. Alloys Compd., 741(2018), p. 85. doi: 10.1016/j.jallcom.2017.12.265
|
[32] |
Y.B. Tan, L.H. Yang, C. Tian, W.C. Liu, R.P. Liu, and X.Y. Zhang, Processing maps for hot working of 47Zr–45Ti–5Al–3V alloy, Mater. Sci. Eng. A, 597(2014), p. 171. doi: 10.1016/j.msea.2013.12.085
|
[33] |
G.X. Chen, X.Y. Lu, J. Yan, H.W. Liu, and B.G. Sang, High-temperature deformation behavior of M50 steel, Metals, 12(2022), No. 4, art. No. 541. doi: 10.3390/met12040541
|
[34] |
Z.M. Cai, H.C. Ji, W.C. Pei, et al., An investigation into the dynamic recrystallization (DRX) behavior and processing map of 33Cr23Ni8Mn3N based on an artificial neural network (ANN), Materials, 13(2020), No. 6, art. No. 1282. doi: 10.3390/ma13061282
|
[35] |
Z.C. Sun, L.S. Zheng, and H. Yang, Softening mechanism and microstructure evolution of as-extruded 7075 aluminum alloy during hot deformation, Mater. Charact., 90(2014), p. 71. doi: 10.1016/j.matchar.2014.01.019
|
[36] |
K. Babu, S. Mandal, C.N. Athreya, B. Shakthipriya, and V.S. Sarma, Hot deformation characteristics and processing map of a phosphorous modified super austenitic stainless steel, Mater. Des., 115(2017), p. 262. doi: 10.1016/j.matdes.2016.11.054
|
[37] |
A. Dehghan-Manshadi, M.R. Barnett, and P.D. Hodgson, Recrystallization in AISI 304 austenitic stainless steel during and after hot deformation, Mater. Sci. Eng. A, 485(2008), No. 1-2, p. 664. doi: 10.1016/j.msea.2007.08.026
|
[38] |
S. Mandal, A.K. Bhaduri, and V. Subramanya Sarma, A study on microstructural evolution and dynamic recrystallization during isothermal deformation of a Ti-modified austenitic stainless steel, Metall. Mater. Trans. A, 42(2011), No. 4, p. 1062. doi: 10.1007/s11661-010-0517-7
|
[39] |
D.F. Li, Q.M. Guo, S.L. Guo, H.J. Peng, and Z.G. Wu, The microstructure evolution and nucleation mechanisms of dynamic recrystallization in hot-deformed Inconel 625 superalloy, Mater. Des., 32(2011), No. 2, p. 696. doi: 10.1016/j.matdes.2010.07.040
|
[40] |
W.J. Liu, B. Jiang, H.C. Xiang, et al., High-temperature mechanical properties of as-extruded AZ80 magnesium alloy at different strain rates, Int. J. Miner. Metall. Mater., 29(2022), No. 7, p. 1373. doi: 10.1007/s12613-022-2456-x
|
[41] |
L.M. Tan, Z.W. Huang, F. Liu, et al., Effects of strain amount and strain rate on grain structure of a novel high Co nickel-based polycrystalline superalloy, Mater. Des., 131(2017), p. 60. doi: 10.1016/j.matdes.2017.06.004
|
[42] |
E.I. Galindo-Nava and P.E.J. Rivera-Díaz-del-Castillo, Thermostatistical modelling of hot deformation in FCC metals, Int. J. Plast., 47(2013), p. 202. doi: 10.1016/j.ijplas.2013.02.002
|
[43] |
Y. Cho, H. Gwon, and S.J. Kim, Effects of C and N on high-temperature deformation behavior of 15Cr–15Mn–4Ni austenitic stainless steels, Mater. Sci. Eng. A, 819(2021), art. No. 141463. doi: 10.1016/j.msea.2021.141463
|
[44] |
D.L. Zhu, M. Zhang, and Y. Wang, Electron backscattered diffraction study of microstructural evolution during isothermal deformation of high-N Mn18Cr18 alloy, Metall. Mater. Trans. B, 50(2019), No. 4, p. 1662. doi: 10.1007/s11663-019-01606-z
|
[45] |
L. Li, Y.X. Qiao, L.M. Zhang, et al., Effect of cavitation erosion induced surface damage on the corrosion behavior of TA31 titanium alloy, Ultrason. Sonochem., 98(2023), art. No. 106498. doi: 10.1016/j.ultsonch.2023.106498
|
[46] |
N.R. Jaladurgam and A.K. Kanjarla, Hot deformation characteristics and microstructure evolution of Hastelloy C-276, Mater. Sci. Eng. A, 712(2018), p. 240. doi: 10.1016/j.msea.2017.11.056
|
[47] |
D. Jia, W.R. Sun, D.S. Xu, et al., Abnormal dynamic recrystallization behavior of a nickel based superalloy during hot deformation, J. Alloys Compd., 787(2019), p. 196. doi: 10.1016/j.jallcom.2019.02.055
|
[48] |
S. Mandal, M. Jayalakshmi, A.K. Bhaduri, and V.S. Sarma, Effect of strain rate on the dynamic recrystallization behavior in a nitrogen-enhanced 316L(N), Metall. Mater. Trans. A, 45(2014), No. 12, p. 5645. doi: 10.1007/s11661-014-2480-1
|
[49] |
W. Roberts and B. Ahlblom, A nucleation criterion for dynamic recrystallization during hot working, Acta Metall., 26(1978), No. 5, p. 801. doi: 10.1016/0001-6160(78)90030-5
|
[50] |
Y. Chen, X.M. Zhang, Z.H. Cai, H. Ding, M.M. Pan, and H.S. Li, Hot deformation behavior of a high-Mn austenitic steel for cryogenic liquified natural gas applications, J. Mater. Eng. Perform., 29(2020), No. 8, p. 5503. doi: 10.1007/s11665-020-05011-5
|
[51] |
G.A. He, Y.F. Zhao, B. Gan, X.F. Sheng, Y. Liu, and L.M. Tan, Mechanism of grain refinement in an equiatomic medium-entropy alloy CrCoNi during hot deformation, J. Alloys Compd., 815(2020), art. No. 152382. doi: 10.1016/j.jallcom.2019.152382
|
[52] |
C.M. Li, Y.B. Tan, and F. Zhao, Dynamic recrystallization behaviour of H13-mod steel, J. Iron Steel Res. Int., 27(2020), No. 9, p. 1073. doi: 10.1007/s42243-020-00462-5
|
[53] |
K. Huang and R.E. Logé, A review of dynamic recrystallization phenomena in metallic materials, Mater. Des., 111(2016), p. 548. doi: 10.1016/j.matdes.2016.09.012
|
[54] |
J.E. Bailey and P.B. Hirsch, The recrystallization process in some polycrystalline metals, Proc. R. Soc. Lond. Ser. A:Math. Phys. Sci., 267(1962), p. 11.
|
[55] |
S. Mandal, A.K. Bhaduri, and V. Subramanya Sarma, Role of twinning on dynamic recrystallization and microstructure during moderate to high strain rate hot deformation of a Ti-modified austenitic stainless steel, Metall. Mater. Trans. A, 43(2012), No. 6, p. 2056. doi: 10.1007/s11661-011-1012-5
|
[56] |
H. Beladi, P. Cizek, and P.D. Hodgson, Dynamic recrystallization of austenite in Ni-30 pct Fe model alloy: Microstructure and texture evolution, Metall. Mater. Trans. A, 40(2009), No. 5, p. 1175. doi: 10.1007/s11661-009-9799-z
|
[57] |
D. Jia, W.R. Sun, D.S. Xu, and F. Liu, Dynamic recrystallization behavior of GH4169G alloy during hot compressive deformation, J. Mater. Sci. Technol., 35(2019), No. 9, p. 1851. doi: 10.1016/j.jmst.2019.04.018
|
[58] |
N. Dudova, A. Belyakov, T. Sakai, and R. Kaibyshev, Dynamic recrystallization mechanisms operating in a Ni–20%Cr alloy under hot-to-warm working, Acta Mater., 58(2010), No. 10, p. 3624. doi: 10.1016/j.actamat.2010.02.032
|
[59] |
Y.C. Lin, X.Y. Wu, X.M. Chen, et al., EBSD study of a hot deformed nickel-based superalloy, J. Alloys Compd., 640(2015), p. 101. doi: 10.1016/j.jallcom.2015.04.008
|
[60] |
H.B. Zhang, K.F. Zhang, H.P. Zhou, Z. Lu, C.H. Zhao, and X.L. Yang, Effect of strain rate on microstructure evolution of a nickel-based superalloy during hot deformation, Mater. Des., 80(2015), p. 51. doi: 10.1016/j.matdes.2015.05.004
|
[61] |
X.Y. Wang, D.K. Wang, J.S. Jin, and J.J. Li, Effects of strain rates and twins evolution on dynamic recrystallization mechanisms of austenite stainless steel, Mater. Sci. Eng. A, 761(2019), art. No. 138044. doi: 10.1016/j.msea.2019.138044
|