Qian Zhao, Zhenli He, Yuehui He, Yue Qiu, Zhonghe Wang, and Yao Jiang, Porous TiFe2 intermetallic compound fabricated via elemental powder reactive synthesis, Int. J. Miner. Metall. Mater., 31(2024), No. 4, pp.764-772. https://dx.doi.org/10.1007/s12613-023-2748-9
Cite this article as: Qian Zhao, Zhenli He, Yuehui He, Yue Qiu, Zhonghe Wang, and Yao Jiang, Porous TiFe2 intermetallic compound fabricated via elemental powder reactive synthesis, Int. J. Miner. Metall. Mater., 31(2024), No. 4, pp.764-772. https://dx.doi.org/10.1007/s12613-023-2748-9

Porous TiFe2 intermetallic compound fabricated via elemental powder reactive synthesis

  • Porous intermetallics show potential in the field of filtration and separation as well as in the field of catalysis. Herein, porous TiFe2 intermetallics were fabricated by the reactive synthesis of elemental powders. The phase transformation and pore formation of porous TiFe2 intermetallics were investigated, and its corrosion behavior and hydrogen evolution reaction (HER) performance in alkali solution were studied. Porous TiFe2 intermetallics with porosity in the range of 34.4%–56.4% were synthesized by the diffusion reaction of Ti and Fe elements, and the pore formation of porous TiFe2 intermetallic compound is the result of a combination of the bridging effect and the Kirkendall effect. The porous TiFe2 samples exhibit better corrosion resistance compared with porous 316L stainless steel, which is related to the formation of uniform nanosheets on the surface that hinder further corrosion, and porous TiFe2 electrode shows the overpotential of 220.6 and 295.6 mV at 10 and 100 mA·cm−2, suggesting a good catalytic performance. The synthesized porous Fe-based intermetallic has a controllable pore structure as well as excellent corrosion resistance, showing its potential in the field of filtration and separation.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return