Cite this article as: |
Liping Tang, Pengfei Wei, Zhili Hu, and Qiu Pang, Microstructure and mechanical properties stability of pre-hardening treatment in Al–Cu alloys for pre-hardening forming process, Int. J. Miner. Metall. Mater., 31(2024), No. 3, pp. 539-551. https://doi.org/10.1007/s12613-023-2758-7 |
Zhili Hu E-mail: zhilihuhit@163.com
Qiu Pang E-mail: pqiuhit@126.com
[1] |
G.R. Ebrahimi, A. Zarei-Hanzaki, M. Haghshenas, and H. Arabshahi, The effect of heat treatment on hot deformation behaviour of Al 2024, J. Mater. Process. Technol., 206(2008), No. 1-3, p. 25. doi: 10.1016/j.jmatprotec.2007.11.261
|
[2] |
R. Khatami, A. Fattah-alhosseini, Y. Mazaheri, M.K. Keshavarz, and M. Haghshenas, Microstructural evolution and mechanical properties of ultrafine grained AA2024 processed by accumulative roll bonding, Int. J. Adv. Manuf. Technol., 93(2017), No. 1, p. 681.
|
[3] |
Y.Z. Chen, W. Liu, and S.J. Yuan, Strength and formability improvement of Al–Cu–Mn aluminum alloy complex parts by thermomechanical treatment with sheet hydroforming, JOM, 67(2015), No. 5, p. 938. doi: 10.1007/s11837-015-1294-y
|
[4] |
A.A. El-Aty, Y. Xu, X. Guo, S.H. Zhang, Y. Ma, and D. Chen, Strengthening mechanisms, deformation behavior, and anisotropic mechanical properties of Al–Li alloys: A review, J. Adv. Res., 10(2018), p. 49. doi: 10.1016/j.jare.2017.12.004
|
[5] |
L. Hua, W.P. Zhang, H.J. Ma, and Z.L. Hu, Investigation of formability, microstructures and post-forming mechanical properties of heat-treatable aluminum alloys subjected to pre-aged hardening warm forming, Int. J. Mach. Tools Manuf., 169(2021), art. No. 103799. doi: 10.1016/j.ijmachtools.2021.103799
|
[6] |
R. Braun, Investigations on the long-term stability of 6013-T6 sheet, Mater. Charact., 56(2006), No. 2, p. 85. doi: 10.1016/j.matchar.2005.03.006
|
[7] |
P. Dong, D.Q. Sun, and H.M. Li, Natural aging behaviour of friction stir welded 6005A-T6 aluminium alloy, Mater. Sci. Eng. A, 576(2013), p. 29. doi: 10.1016/j.msea.2013.03.077
|
[8] |
L.P. Ding, Y. He, Z. Wen, P.Z. Zhao, Z.H. Jia, and Q. Liu, Optimization of the pre-aging treatment for an AA6022 alloy at various temperatures and holding times, J. Alloys Compd., 647(2015), p. 238. doi: 10.1016/j.jallcom.2015.05.188
|
[9] |
Y. Aruga, M. Kozuka, Y. Takaki, and T. Sato, Effects of natural aging after pre-aging on clustering and bake-hardening behavior in an Al–Mg–Si alloy, Scripta Mater., 116(2016), p. 82. doi: 10.1016/j.scriptamat.2016.01.019
|
[10] |
Y. Takaki, T. Masuda, E. Kobayashi, and T. Sato, Effects of natural aging on bake hardening behavior of Al–Mg–Si alloys with multi-step aging process, Mater. Trans., 55(2014), No. 8, p. 1257. doi: 10.2320/matertrans.L-M2014827
|
[11] |
L. Wan, Y.L. Deng, L.Y. Ye, and Y. Zhang, The natural ageing effect on pre-ageing kinetics of Al–Zn–Mg alloy, J. Alloys Compd., 776(2019), p. 469. doi: 10.1016/j.jallcom.2018.10.338
|
[12] |
G.J. Li, M.X. Guo, J.Q. Du, and L.Z. Zhuang, Synergistic improvement in bake-hardening response and natural aging stability of Al–Mg–Si–Cu–Zn alloys via non-isothermal pre-aging treatment, Mater. Des., 218(2022), art. No. 110714. doi: 10.1016/j.matdes.2022.110714
|
[13] |
J.A. Österreicher, G. Kirov, S.S.A. Gerstl, E. Mukeli, F. Grabner, and M. Kumar, Stabilization of 7xxx aluminium alloys, J. Alloys Compd., 740(2018), p. 167. doi: 10.1016/j.jallcom.2018.01.003
|
[14] |
J.A. Österreicher, D. Nebeling, F. Grabner, et al., Secondary ageing and formability of an Al–Cu–Mg alloy (2024) in W and under-aged tempers, Mater. Des., 226(2023), art. No. 111634. doi: 10.1016/j.matdes.2023.111634
|
[15] |
P.A. Rometsch, S.X. Gao, and M.J. Couper, Effect of composition and pre-ageing on the natural ageing and paint-baking behaviour of Al–Mg–Si Alloys, [in] H. Weiland, A.D. Rollett, and W.A. Cassada, eds., The 13th International Conference on Aluminum Alloys, Pittsburgh, PA, 2012, p. 15.
|
[16] |
W.B. Tu, J.G. Tang, L.H. Ma, S.L. Wang, and W.H. Chen, The combined effect of pre-aging and Sn addition on age hardening response and precipitation behavior of Al–1.0Mg–0.6Si (–0.3Cu) alloy, J. Mater. Res. Technol., 23(2023), p. 4606. doi: 10.1016/j.jmrt.2023.02.075
|
[17] |
S.Z. Zhu, D. Wang, B.L. Xiao, and Z.Y. Ma, Effects of natural aging on precipitation behavior and hardening ability of peak artificially aged SiCp/Al–Mg–Si composites, Composites Part B, 236(2022), art. No. 109851. doi: 10.1016/j.compositesb.2022.109851
|
[18] |
P.P. Ma, C.H. Liu, Q.Y. Chen, Q. Wang, L.H. Zhan, and J.J. Li, Natural-ageing-enhanced precipitation near grain boundaries in high-strength aluminum alloy, J. Mater. Sci. Technol., 46(2020), p. 107. doi: 10.1016/j.jmst.2019.11.035
|
[19] |
J.G. Zhao, Z.Y. Liu, S. Bai, D.P. Zeng, L. Luo, and J. Wang, Effects of natural aging on the formation and strengthening effect of G.P. zones in a retrogression and re-aged Al–Zn–Mg–Cu alloy, J. Alloys Compd., 829(2020), art. No. 154469. doi: 10.1016/j.jallcom.2020.154469
|
[20] |
C.H. Liu, Z.Y. Ma, P.P. Ma, L.H. Zhan, and M.H. Huang, Multiple precipitation reactions and formation of θ'-phase in a pre-deformed Al–Cu alloy, Mater. Sci. Eng. A, 733(2018), p. 28. doi: 10.1016/j.msea.2018.07.039
|
[21] |
K.C. Yu, L.G. Hou, M.X. Guo, et al., A method for determining R-value of aluminum sheets with the Portevin-Le Chatelier effect, Mater. Sci. Eng. A, 814(2021), art. No. 141246. doi: 10.1016/j.msea.2021.141246
|
[22] |
S. Gupta, A.J. Beaudoin, and J. Chevy, Strain rate jump induced negative strain rate sensitivity (NSRS) in aluminum alloy 2024: Experiments and constitutive modeling, Mater. Sci. Eng. A, 683(2017), p. 143. doi: 10.1016/j.msea.2016.12.010
|
[23] |
S.K. Son, M. Takeda, M. Mitome, Y. Bando, and T. Endo, Precipitation behavior of an Al–Cu alloy during isothermal aging at low temperatures, Mater. Lett., 59(2005), No. 6, p. 629. doi: 10.1016/j.matlet.2004.10.058
|
[24] |
J.M. Papazian, A calorimetric study of precipitation in aluminum alloy 2219, Metall. Trans. A, 12(1981), No. 2, p. 269. doi: 10.1007/BF02655200
|
[25] |
T. Sato, S. Hirosawa, K. Hirose, and T. Maeguchi, Roles of microalloying elements on the cluster formation in the initial stage of phase decomposition of Al-based alloys, Metall. Mater. Trans. A, 34(2003), No. 12, p. 2745. doi: 10.1007/s11661-003-0176-z
|
[26] |
G.A. Li, Z. Ma, J.T. Jiang, W.Z. Shao, W. Liu, and L. Zhen, Effect of pre-stretch on the precipitation behavior and the mechanical properties of 2219 Al alloy, Materials, 14(2021), No. 9, art. No. 2101. doi: 10.3390/ma14092101
|
[27] |
W.P. Zhang, H.H. Li, Z.L. Hu, and L. Hua, Investigation on the deformation behavior and post-formed microstructure/properties of AA7075-T6 alloy under pre-hardened hot forming process, Mater. Sci. Eng. A, 792(2020), art. No. 139749. doi: 10.1016/j.msea.2020.139749
|
[28] |
Y.C. Lin, J.L. Zhang, G. Liu, and Y.J. Liang, Effects of pre-treatments on aging precipitates and corrosion resistance of a creep-aged Al–Zn–Mg–Cu alloy, Mater. Des., 83(2015), p. 866. doi: 10.1016/j.matdes.2015.06.029
|
[29] |
H.M. Wang, Y.P. Yi, and S.Q. Huang, Influence of pre-deformation and subsequent ageing on the hardening behavior and microstructure of 2219 aluminum alloy forgings, J. Alloys Compd., 685(2016), p. 941. doi: 10.1016/j.jallcom.2016.06.111
|
[30] |
E.M. Elgallad, Z. Zhang, and X.G. Chen, Effect of two-step aging on the mechanical properties of AA2219 DC cast alloy, Mater. Sci. Eng. A, 625(2015), p. 213. doi: 10.1016/j.msea.2014.12.002
|
[31] |
R. Santos-Güemes, L. Capolungo, J. Segurado, and J. LLorca, Dislocation dynamics prediction of the strength of Al–Cu alloys containing shearable θ'' precipitates, J. Mech. Phys. Solids, 151(2021), art. No. 104375. doi: 10.1016/j.jmps.2021.104375
|
[32] |
J.Y. Li, S.L. Lü, S.S. Wu, D.J. Zhao, and W. Guo, Micro-mechanism of simultaneous improvement of strength and ductility of squeeze-cast Al–Cu alloy, Mater. Sci. Eng. A, 833(2022), art. No. 142538. doi: 10.1016/j.msea.2021.142538
|
[33] |
A. Deschamps and F. De Geuser, On the validity of simple precipitate size measurements by small-angle scattering in metallic systems, J. Appl. Crystallogr., 44(2011), p. 343. doi: 10.1107/S0021889811003049
|
[34] |
A. Biswas, D.J. Siegel, C. Wolverton, and D.N. Seidman, Precipitates in Al–Cu alloys revisited: Atom-probe tomographic experiments and first-principles calculations of compositional evolution and interfacial segregation, Acta Mater., 59(2011), No. 15, p. 6187. doi: 10.1016/j.actamat.2011.06.036
|
[35] |
Z.G. Chen, J.L. He, Y.Y. Zheng, and C.H. Lu, Mechanical performance improvement of Al–Cu–Mg using various thermomechanical treatments, Mater. Sci. Eng. A, 841(2022), art. No. 142869. doi: 10.1016/j.msea.2022.142869
|
[36] |
V.L. Tellkamp, E.J. Lavernia, and A. Melmed, Mechanical behavior and microstructure of a thermally stable bulk nanostructured Al alloy, Metall. Mater. Trans. A, 32(2001), No. 9, p. 2335. doi: 10.1007/s11661-001-0207-6
|
[37] |
T. Shanmugasundaram, M. Heilmaier, B.S. Murty, and V.S. Sarma, Microstructure and mechanical properties of nanostructured Al–4Cu alloy produced by mechanical alloying and vacuum hot pressing, Metall. Mater. Trans. A, 40(2009), No. 12, p. 2798. doi: 10.1007/s11661-009-0005-0
|
[38] |
D.H. Liu, D.J. Wu, G. Ma, et al., Effect of post-deposition heat treatment on laser-TIG hybrid additive manufactured Al–Cu alloy, Virtual Phys. Prototyp., 15(2020), p. 445. doi: 10.1080/17452759.2020.1818021
|
[39] |
J. Lan, X.J. Shen, J. Liu, and L. Hua, Strengthening mechanisms of 2A14 aluminum alloy with cold deformation prior to artificial aging, Mater. Sci. Eng. A, 745(2019), p. 517. doi: 10.1016/j.msea.2018.12.051
|
[40] |
S. Spriano, R. Doglione, and M. Baricco, Texture, hardening and mechanical anisotropy in A.A. 8090-T851 plate, Mater. Sci. Eng. A, 257(1998), No. 1, p. 134. doi: 10.1016/S0921-5093(98)00831-4
|
[41] |
M.J. Starink, P. Wang, I. Sinclair, and P.J. Gregson, Microstrucure and strengthening of Al–Li–Cu–Mg alloys and MMCs: II. Modelling of yield strength, Acta Mater., 47(1999), No. 14, p. 3855. doi: 10.1016/S1359-6454(99)00228-1
|
[42] |
B.X. Xie, L. Huang, Z.Y. Wang, X.X. Li, and J.J. Li, Microstructural evolution and mechanical properties of 2219 aluminum alloy from different aging treatments to subsequent electromagnetic forming, Mater. Charact., 181(2021), art. No. 111470. doi: 10.1016/j.matchar.2021.111470
|
[43] |
K.K. Ma, H.M. Wen, T. Hu, et al., Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy, Acta Mater., 62(2014), p. 141. doi: 10.1016/j.actamat.2013.09.042
|
[44] |
H.M. Wen, T.D. Topping, D. Isheim, D.N. Seidman, and E.J. Lavernia, Strengthening mechanisms in a high-strength bulk nanostructured Cu–Zn–Al alloy processed via cryomilling and spark plasma sintering, Acta Mater., 61(2013), No. 8, p. 2769. doi: 10.1016/j.actamat.2012.09.036
|
[45] |
Z.Y. Ma, L.H. Zhan, C.H. Liu, et al., Stress-level-dependency and bimodal precipitation behaviors during creep ageing of Al–Cu alloy: Experiments and modeling, Int. J. Plast., 110(2018), p. 183. doi: 10.1016/j.ijplas.2018.07.001
|
[46] |
Z.J. Shen, Q.Q. Ding, C.H. Liu, et al., Atomic-scale mechanism of the θ'' → θ' phase transformation in Al–Cu alloys, J. Mater. Sci. Technol., 33(2017), No. 10, p. 1159.
|
[47] |
J.S. Yang, C.H. Liu, P.P. Ma, L.H. Chen, L.H. Zhan, and N. Yan, Superposed hardening from precipitates and dislocations enhances strength-ductility balance in Al–Cu alloy, Int. J. Plast., 158(2022), art. No. 103413. doi: 10.1016/j.ijplas.2022.103413
|
[48] |
Z.Q. Li, W.R. Ren, H.W. Chen, and J.F. Nie, θ''' precipitate phase, GP zone clusters and their origin in Al–Cu alloys, J. Alloys Compd., 930(2023), art. No. 167396. doi: 10.1016/j.jallcom.2022.167396
|
[49] |
Y. Chen, A.Q. Wang, J.P. Xie, and Y.C. Guo, Deformation mechanisms in Al/Al2Cu/Cu multilayer under compressive loading, J. Alloys Compd., 885(2021), art. No. 160921. doi: 10.1016/j.jallcom.2021.160921
|
[50] |
H. Liu, I. Papadimitriou, F.X. Lin, and J. LLorca, Precipitation during high temperature aging of Al–Cu alloys: A multiscale analysis based on first principles calculations, Acta Mater., 167(2019), p. 121. doi: 10.1016/j.actamat.2019.01.024
|
[51] |
H. Miyoshi, H. Kimizuka, A. Ishii, and S. Ogata, Competing nucleation of single- and double-layer Guinier-Preston zones in Al–Cu alloys, Sci. Rep., 11(2021), No. 1, art. No. 4503. doi: 10.1038/s41598-021-83920-8
|
[52] |
D. Sadeghi-Nezhad, S.H.M. Anijdan, H. Lee, et al., The effect of cold rolling, double aging and overaging processes on the tensile property and precipitation of AA2024 alloy, J. Mater. Res. Technol., 9(2020), No. 6, p. 15475. doi: 10.1016/j.jmrt.2020.11.005
|
[53] |
S. Fu, H.Q. Liu, N. Qi, et al., On the electrostatic potential assisted nucleation and growth of precipitates in Al–Cu alloy, Scripta Mater., 150(2018), p. 13. doi: 10.1016/j.scriptamat.2018.02.017
|
[54] |
A. Somoza, M.P. Petkov, K.G. Lynn, and A. Dupasquier, Stability of vacancies during solute clustering in Al–Cu-based alloys, Phys. Rev. B, 65(2002), No. 9, art. No. 094107. doi: 10.1103/PhysRevB.65.094107
|
[55] |
M. Murayama and K. Hono, Pre-precipitate clusters and precipitation processes in Al–Mg–Si alloys, Acta Mater., 47(1999), No. 5, p. 1537. doi: 10.1016/S1359-6454(99)00033-6
|
[56] |
R.K.W. Marceau, G. Sha, R. Ferragut, A. Dupasquier, and S.P. Ringer, Solute clustering in Al–Cu–Mg alloys during the early stages of elevated temperature ageing, Acta Mater., 58(2010), No. 15, p. 4923. doi: 10.1016/j.actamat.2010.05.020
|
[57] |
H. Miyoshi, H. Kimizuka, A. Ishii, and S. Ogata, Temperature-dependent nucleation kinetics of Guinier-Preston zones in Al–Cu alloys: An atomistic kinetic Monte Carlo and classical nucleation theory approach, Acta Mater., 179(2019), p. 262. doi: 10.1016/j.actamat.2019.08.032
|