Xiaoyan Wang, Safeer Jan, Zhiyong Wang, and Xianbo Jin, Solid Bi2O3-derived nanostructured metallic bismuth with high formate selectivity for the electrocatalytic reduction of CO2, Int. J. Miner. Metall. Mater., 31(2024), No. 4, pp. 803-811. https://doi.org/10.1007/s12613-023-2770-y
Cite this article as:
Xiaoyan Wang, Safeer Jan, Zhiyong Wang, and Xianbo Jin, Solid Bi2O3-derived nanostructured metallic bismuth with high formate selectivity for the electrocatalytic reduction of CO2, Int. J. Miner. Metall. Mater., 31(2024), No. 4, pp. 803-811. https://doi.org/10.1007/s12613-023-2770-y
Research Article

Solid Bi2O3-derived nanostructured metallic bismuth with high formate selectivity for the electrocatalytic reduction of CO2

+ Author Affiliations
  • Corresponding author:

    Xianbo Jin    E-mail: xbjin@whu.edu.cn

  • Received: 22 July 2023Revised: 26 October 2023Accepted: 31 October 2023Available online: 3 November 2023
  • CO2 electrochemical reduction (CO2ER) is an important research area for carbon neutralization. However, available catalysts for CO2 reduction are still characterized by limited stability and activity. Recently, metallic bismuth (Bi) has emerged as a promising catalyst for CO2ER. Herein, we report the solid cathode electroreduction of commercial micronized Bi2O3 as a straightforward approach for the preparation of nanostructured Bi. At −1.1 V versus reversible hydrogen electrode in a KHCO3 aqueous electrolyte, the resulting nanostructure Bi delivers a formate current density of ~40 mA·cm−2 with a current efficiency of ~86%, and the formate selectivity reaches 97.6% at −0.78 V. Using nanosized Bi2O3 as the precursor can further reduce the primary particle sizes of the resulting Bi, leading to a significantly increased formate selectivity at relatively low overpotentials. The high catalytic activity of nanostructured Bi is attributable to the ultrafine and interconnected Bi nanoparticles in the nanoporous structure, which exposes abundant active sites for CO2 electrocatalytic reduction.
  • loading
  • Supplementary Information-s12613-023-2770-y.docx
  • [1]
    Z.Y. Sun, T. Ma, H.C. Tao, Q. Fan, and B.X. Han, Fundamentals and challenges of electrochemical CO2 reduction using two-dimensional materials, Chem, 3(2017), No. 4, p. 560. doi: 10.1016/j.chempr.2017.09.009
    [2]
    N. Han, P. Ding, L. He, Y.Y. Li, and Y.G. Li, Promises of main group metal-based nanostructured materials for electrochemical CO2 reduction to formate, Adv. Energy Mater., 10(2020), No. 11, art. No. 1902338. doi: 10.1002/aenm.201902338
    [3]
    R. Kortlever, J. Shen, K.J.P. Schouten, F. Calle-Vallejo, and M.T.M. Koper, Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide, J. Phys. Chem. Lett., 6(2015), No. 20, p. 4073. doi: 10.1021/acs.jpclett.5b01559
    [4]
    X. Chen, Y. Liu, and J.W. Wu, Sustainable production of formic acid from biomass and carbon dioxide, Mol. Catal., 483(2020), art. No. 110716. doi: 10.1016/j.mcat.2019.110716
    [5]
    Z.N. Yang, F.E. Oropeza, and K.H.L. Zhang, P-block metal-based (Sn, In, Bi, Pb) electrocatalysts for selective reduction of CO2 to formate, APL Mater., 8(2020), No. 6, art. No. 060901. doi: 10.1063/5.0004194
    [6]
    S.Y. Yang, M.H. Jiang, W.J. Zhang, et al. , In situ structure refactoring of bismuth nanoflowers for highly selective electrochemical reduction of CO2 to formate, Adv. Funct. Mater., 33(2023), No. 37, art. No. 2301984. doi: 10.1002/adfm.202301984
    [7]
    W.J. Zhang, S.Y. Yang, M.H. Jiang, et al., Nanocapillarity and nanoconfinement effects of pipet-like bismuth@carbon nanotubes for highly efficient electrocatalytic CO2 reduction, Nano Lett., 21(2021), No. 6, p. 2650. doi: 10.1021/acs.nanolett.1c00390
    [8]
    R. Zhou, N. Han, and Y.G. Li, Recent advances in bismuth-based CO2 reduction electrocatalysts, J. Electrochem., 25(2019), No. 4, p. 445.
    [9]
    H. Yang, N. Han, J. Deng, et al., Selective CO2 reduction on 2D mesoporous Bi nanosheets, Adv. Energy Mater., 8(2018), No. 35, art. No. 1801536. doi: 10.1002/aenm.201801536
    [10]
    P.L. Lu, D.L. Gao, H.Y. He, et al., Facile synthesis of a bismuth nanostructure with enhanced selectivity for electrochemical conversion of CO2 to formate, Nanoscale, 11(2019), No. 16, p. 7805. doi: 10.1039/C9NR01094G
    [11]
    Y.N. Zhang, D.F. Niu, S.Z. Hu, and X.S. Zhang, Recent progress on enhancing effect of nanosized metals for electrochemical CO2 reduction, J. Electrochem., 26(2020), No. 4, p. 495.
    [12]
    D. Wu, G. Huo, W.Y. Chen, X.Z. Fu, and J.L. Luo, Boosting formate production at high current density from CO2 electroreduction on defect-rich hierarchical mesoporous Bi/Bi2O3 junction nanosheets, Appl. Catal. B: Environ., 271(2020), art. No. 118957. doi: 10.1016/j.apcatb.2020.118957
    [13]
    P.P. Su, W.B. Xu, Y.L. Qiu, T.T. Zhang, X.F. Li, and H.M. Zhang, Ultrathin bismuth nanosheets as a highly efficient CO2 reduction electrocatalyst, ChemSusChem, 11(2018), No. 5, p. 848. doi: 10.1002/cssc.201702229
    [14]
    L. Zhang, Z.Y. Wang, N. Mehio, X.B. Jin, and S. Dai, Thickness- and particle-size-dependent electrochemical reduction of carbon dioxide on thin-layer porous silver electrodes, ChemSusChem, 9(2016), No. 5, p. 428. doi: 10.1002/cssc.201501637
    [15]
    G.R. Jia, Y. Wang, M.Z. Sun, et al., Size effects of highly dispersed bismuth nanoparticles on electrocatalytic reduction of carbon dioxide to formic acid, J. Am. Chem. Soc., 145(2023), No. 25, p. 14133. doi: 10.1021/jacs.3c04727
    [16]
    M. Azuma, K. Hashimoto, M. Hiramoto, M. Watanabe, and T. Sakata, Electrochemical reduction of carbon dioxide on various metal electrodes in low-temperature aqueous KHCO3 media, J. Electrochem. Soc., 137(1990), No. 6, p. 1772. doi: 10.1149/1.2086796
    [17]
    Q. Lu, J. Rosen, Y. Zhou, et al., A selective and efficient electrocatalyst for carbon dioxide reduction, Nat. Commun., 5(2014), art. No. 3242. doi: 10.1038/ncomms4242
    [18]
    G.O. Barasa, T.S. Yu, X.L. Lu, et al., Electrochemical training of nanoporous Cu-In catalysts for efficient CO2-to-CO conversion and high durability, Electrochim. Acta, 295(2019), p. 584. doi: 10.1016/j.electacta.2018.10.175
    [19]
    L. Li, F.F. Cai, F.X.Y. Qi, and D.K. Ma, Cu nanowire bridged Bi nanosheet arrays for efficient electrochemical CO2 reduction toward formate, J. Alloys Compd., 841(2020), art. No. 155789. doi: 10.1016/j.jallcom.2020.155789
    [20]
    F.P. García de Arquer, O.S. Bushuyev, P. de Luna, et al., 2D metal oxyhalide-derived catalysts for efficient CO2 electroreduction, Adv. Mater., 30(2018), No. 38, art. No. 1802858. doi: 10.1002/adma.201802858
    [21]
    T. Burdyny, P.J. Graham, Y.J. Pang, et al., Nanomorphology-enhanced gas-evolution intensifies CO2 reduction electrochemistry, ACS Sustainable Chem. Eng., 5(2017), No. 5, p. 4031. doi: 10.1021/acssuschemeng.7b00023
    [22]
    K. Fan, Y.F. Jia, Y.F. Ji, et al., Curved surface boosts electrochemical CO2 reduction to formate via bismuth nanotubes in a wide potential window, ACS Catal., 10(2020), No. 1, p. 358. doi: 10.1021/acscatal.9b04516
    [23]
    C.W. Li and M.W. Kanan, CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films, J. Am. Chem. Soc., 134(2012), No. 17, p. 7231. doi: 10.1021/ja3010978
    [24]
    W.J. Yan, J.T. Zhang, A.J. Lü, S.L. Lu, Y.W. Zhong, and M.Y. Wang, Self-supporting and hierarchically porous Ni x Fe–S/NiFe2O4 heterostructure as a bifunctional electrocatalyst for fluctuating overall water splitting, Int. J. Miner. Metall. Mater., 29(2022), No. 5, p. 1120. doi: 10.1007/s12613-022-2443-2
    [25]
    W.Q. Lai, Y.T. Liu, M.M. Zeng, et al., One-step electrochemical dealloying of 3D Bi-continuous micro-nanoporous bismuth electrodes and CO2RR performance, Nanomaterials, 13(2023), No. 11, art. No. 1767. doi: 10.3390/nano13111767
    [26]
    S. Kim, W.J. Dong, S. Gim, et al., Shape-controlled bismuth nanoflakes as highly selective catalysts for electrochemical carbon dioxide reduction to formate, Nano Energy, 39(2017), p. 44. doi: 10.1016/j.nanoen.2017.05.065
    [27]
    M.R. Singh, E.L. Clark, and A.T. Bell, Effects of electrolyte, catalyst, and membrane composition and operating conditions on the performance of solar-driven electrochemical reduction of carbon dioxide, Phys. Chem. Chem. Phys., 17(2015), No. 29, p. 18924. doi: 10.1039/C5CP03283K
    [28]
    S. Liu, X.F. Lu, J. Xiao, X. Wang, and X.W.D. Lou, Bi2O3 nanosheets grown on multi-channel carbon matrix to catalyze efficient CO2 electroreduction to HCOOH, Angew. Chem. Int. Ed., 58(2019), No. 39, p. 13828. doi: 10.1002/anie.201907674
    [29]
    Q.F. Gong, P. Ding, M.Q. Xu, et al., Structural defects on converted bismuth oxide nanotubes enable highly active electrocatalysis of carbon dioxide reduction, Nat. Commun., 10(2019), No. 1, art. No. 2807. doi: 10.1038/s41467-019-10819-4
    [30]
    X. Zhang, J. Fu, Y.Y. Liu, X.D. Zhou, and J.L. Qiao, Bismuth anchored on MWCNTs with controlled ultrafine nanosize enables high-efficient electrochemical reduction of carbon dioxide to formate fuel, ACS Sustainable Chem. Eng., 8(2020), No. 12, p. 4871. doi: 10.1021/acssuschemeng.0c00099
    [31]
    Y.L. Xing, H.H. Chen, Y. Liu, et al., A phosphate-derived bismuth catalyst with abundant grain boundaries for efficient reduction of CO2 to HCOOH, Chem. Commun., 57(2021), No. 12, p. 1502. doi: 10.1039/D0CC06756C
    [32]
    P.L. Deng, H.M. Wang, R.J. Qi, et al., Bismuth oxides with enhanced bismuth–oxygen structure for efficient electrochemical reduction of carbon dioxide to formate, ACS Catal., 10(2020), No. 1, p. 743. doi: 10.1021/acscatal.9b04043
    [33]
    S. Zhang, P. Kang, and T.J. Meyer, Nanostructured tin catalysts for selective electrochemical reduction of carbon dioxide to formate, J. Am. Chem. Soc., 136(2014), No. 5, p. 1734. doi: 10.1021/ja4113885
    [34]
    X.Y. Wang, Z.Y. Wang, and X.B. Jin, Nanoporous bismuth for the electrocatalytic reduction of CO2 to formate, Phys. Chem. Chem. Phys., 23(2021), No. 35, p. 19195. doi: 10.1039/D1CP02661E
    [35]
    W.J. Dong, C.J. Yoo, and J.L. Lee, Monolithic nanoporous In–Sn alloy for electrochemical reduction of carbon dioxide, ACS Appl. Mater. Interfaces, 9(2017), No. 50, p. 43575. doi: 10.1021/acsami.7b10308
    [36]
    F.H. Zhang, C.Z. Chen, S.L. Yan, J.H. Zhong, B. Zhang, and Z.M. Cheng, Cu@Bi nanocone induced efficient reduction of CO2 to formate with high current density, Appl. Catal. A, 598(2020), art. No. 117545. doi: 10.1016/j.apcata.2020.117545
    [37]
    X.W. An, S.S. Li, A. Yoshida, et al., Bi-doped SnO nanosheets supported on Cu foam for electrochemical reduction of CO2 to HCOOH, ACS Appl. Mater. Interfaces, 11(2019), No. 45, p. 42114. doi: 10.1021/acsami.9b13270
    [38]
    Q. Yang, Q.L. Wu, Y. Liu, et al., Novel Bi-doped amorphous SnO x nanoshells for efficient electrochemical CO2 reduction into formate at low overpotentials, Adv. Mater., 32(2020), No. 36, art. No. 2002822. doi: 10.1002/adma.202002822
    [39]
    M.Y. Fan, S. Prabhudev, S. Garbarino, et al., Uncovering the nature of electroactive sites in nano architectured dendritic Bi for highly efficient CO2 electroreduction to formate, Appl. Catal. B, 274(2020), art. No. 119031. doi: 10.1016/j.apcatb.2020.119031
    [40]
    Y.T. Wang, L. Cheng, J.Z. Liu, et al., Rich bismuth–oxygen bonds in bismuth derivatives from Bi2S3 pre-catalysts promote the electrochemical reduction of CO2, ChemElectroChem, 7(2020), No. 13, p. 2864. doi: 10.1002/celc.202000656
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Share Article

    Article Metrics

    Article Views(228) PDF Downloads(11) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return