Jinpin Wu, Junhang Tian, Xueyi Sun,  and Weidong Zhuang, Cycling performance of layered oxide cathode materials for sodium-ion batteries, Int. J. Miner. Metall. Mater., 31(2024), No. 7, pp. 1720-1744. https://doi.org/10.1007/s12613-023-2776-5
Cite this article as:
Jinpin Wu, Junhang Tian, Xueyi Sun,  and Weidong Zhuang, Cycling performance of layered oxide cathode materials for sodium-ion batteries, Int. J. Miner. Metall. Mater., 31(2024), No. 7, pp. 1720-1744. https://doi.org/10.1007/s12613-023-2776-5
Invited Review

Cycling performance of layered oxide cathode materials for sodium-ion batteries

+ Author Affiliations
  • Corresponding authors:

    Xueyi Sun    E-mail: sunxy@ustb.edu.cn

    Weidong Zhuang    E-mail: wdzhuang@ustb.edu.cn

  • Received: 14 August 2023Revised: 31 October 2023Accepted: 2 November 2023Available online: 3 November 2023
  • Layered oxide is a promising cathode material for sodium-ion batteries because of its high-capacity, high operating voltage, and simple synthesis. Cycling performance is an important criterion for evaluating the application prospects of batteries. However, facing challenges, including phase transitions, ambient stability, side reactions, and irreversible anionic oxygen activity, the cycling performance of layered oxide cathode materials still cannot meet the application requirements. Therefore, this review proposes several strategies to address these challenges. First, bulk doping is introduced from three aspects: cationic single doping, anionic single doping, and multi-ion doping. Second, homogeneous surface coating and concentration gradient modification are reviewed. In addition, methods such as mixed structure design, particle engineering, high-entropy material construction, and integrated modification are proposed. Finally, a summary and outlook provide a new horizon for developing and modifying layered oxide cathode materials.
  • loading
  • [1]
    H. Xu, Q. Yan, W.J. Yao, C.S. Lee, and Y.B. Tang, Mainstream optimization strategies for cathode materials of sodium-ion batteries, Small Struct., 3(2022), No. 4, art. No. 2100217. doi: 10.1002/sstr.202100217
    [2]
    Y.J. Fang, X.Y. Yu, and X.W. Lou, A practical high-energy cathode for sodium-ion batteries based on uniform P2-Na0.7CoO2 microspheres, Angew. Chem. Int. Ed., 56(2017), No. 21, p. 5801. doi: 10.1002/anie.201702024
    [3]
    J. Wang, Y.F. Yuan, X.H. Rao, et al., Realizing high-performance Na3V2(PO4)2O2F cathode for sodium-ion batteries via Nb-doping, Int. J. Miner. Metall. Mater., 30(2023), No. 10, p. 1859. doi: 10.1007/s12613-023-2666-x
    [4]
    C. Delmas, C. Fouassier, and P. Hagenmuller, Structural classification and properties of the layered oxides, Physica B+C, 99(1980), No. 1–4, p. 81.
    [5]
    C.L. Zhao, M. Avdeev, L.Q. Chen, and Y.S. Hu, An O3-type Oxide with Low Sodium Content as the Phase-Transition-Free Anode for Sodium-Ion Batteries, Angew. Chem. Int. Ed., 57(2018), No. 24, p. 7056. doi: 10.1002/anie.201801923
    [6]
    C.L. Zhao, Q.D. Wang, Z.P. Yao, et al., Rational design of layered oxide materials for sodium-ion batteries, Science, 370(2020), No. 6517, p. 708. doi: 10.1126/science.aay9972
    [7]
    X.H. Ma, H.L. Chen, and G. Ceder, Electrochemical properties of monoclinic NaMnO2, J. Electrochem. Soc., 158(2011), No. 12, art. No. A1307. doi: 10.1149/2.035112jes
    [8]
    S. Komaba, T. Nakayama, A. Ogata, et al., Electrochemically reversible sodium intercalation of layered NaNi0.5Mn0.5O2 and NaCrO2, ECS Trans., 16(2009), No. 42, p. 43. doi: 10.1149/1.3112727
    [9]
    N. Yabuuchi, M. Kajiyama, J. Iwatate, et al., P2-type Na x[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries, Nat. Mater., 11(2012), No. 6, p. 512. doi: 10.1038/nmat3309
    [10]
    X.H. Rong, E.Y. Hu, Y.X. Lu, et al., Anionic redox reaction-induced high-capacity and low-strain cathode with suppressed phase transition, Joule, 3(2019), No. 2, p. 503. doi: 10.1016/j.joule.2018.10.022
    [11]
    Q. Wang, S. Mariyappan, G. Rousse, et al., Unlocking anionic redox activity in O3-type sodium 3d layered oxides via Li substitution, Nat. Mater., 20(2021), No. 3, p. 353. doi: 10.1038/s41563-020-00870-8
    [12]
    J.Y. Hwang, J. Kim, T.Y. Yu, and Y.K. Sun, A new P2-type layered oxide cathode with extremely high energy density for sodium-ion batteries, Adv. Energy Mater., 9(2019), No. 15, art. No. 1803346. doi: 10.1002/aenm.201803346
    [13]
    Z.H. Wu, Y.X. Ni, S. Tan, et al., Realizing high capacity and zero strain in layered oxide cathodes via lithium dual-site substitution for sodium-ion batteries, J. Am. Chem. Soc., 145(2023), No. 17, p. 9596. doi: 10.1021/jacs.3c00117
    [14]
    F.B. Spingler, M. Naumann, and A. Jossen, Capacity recovery effect in commercial LiFePO4/graphite cells, J. Electrochem. Soc., 167(2020), No. 4, art. No. 040526. doi: 10.1149/1945-7111/ab7900
    [15]
    Q.W. Chen, S. Chen, L.L. Zhao, J.Z. Ma, H.S. Wang, and J.T. Zhang, Interface coating of iron nitride on carbon cloth for reversible lithium redox in rechargeable battery, Chem. Eng. J., 431(2022), art. No. 133961. doi: 10.1016/j.cej.2021.133961
    [16]
    X.L. Cui, S.M. Wang, X.S. Ye, et al., Insights into the improved cycle and rate performance by ex-situ F and in-situ Mg dual doping of layered oxide cathodes for sodium-ion batteries, Energy Storage Mater., 45(2022), p. 1153. doi: 10.1016/j.ensm.2021.11.016
    [17]
    W.K. Pang, S. Kalluri, V.K. Peterson, et al., Interplay between electrochemistry and phase evolution of the P2-type Na x(Fe1/2Mn1/2)O2 cathode for use in sodium-ion batteries, Chem. Mater., 27(2015), No. 8, p. 3150. doi: 10.1021/acs.chemmater.5b00943
    [18]
    V. Duffort, E. Talaie, R. Black, and L.F. Nazar, Uptake of CO2 in layered P2-Na0.67Mn0.5Fe0.5O2: Insertion of carbonate anions, Chem. Mater., 27(2015), No. 7, p. 2515. doi: 10.1021/acs.chemmater.5b00097
    [19]
    Y. You, A. Dolocan, W.D. Li, and A. Manthiram, Understanding the air-exposure degradation chemistry at a nanoscale of layered oxide cathodes for sodium-ion batteries, Nano Lett., 19(2019), No. 1, p. 182. doi: 10.1021/acs.nanolett.8b03637
    [20]
    C.L. Xu, H.R. Cai, Q.L. Chen, X.Q. Kong, H.L. Pan, and Y.S. Hu, Origin of air-stability for transition metal oxide cathodes in sodium-ion batteries, ACS Appl. Mater. Interfaces, 14(2022), No. 4, p. 5338. doi: 10.1021/acsami.1c21103
    [21]
    T.Y. Song, C.C. Wang, and C.S. Lee, Structural degradation mechanisms and modulation technologies of layered oxide cathodes for sodium-ion batteries, Carbon Neutralization, 1(2022), No. 1, p. 68. doi: 10.1002/cnl2.7
    [22]
    Y. Zhang, M.M. Wu, J.W. Ma, et al., Revisiting the Na2/3Ni1/3Mn2/3O2 cathode: Oxygen redox chemistry and oxygen release suppression, ACS Cent. Sci., 6(2020), No. 2, p. 232. doi: 10.1021/acscentsci.9b01166
    [23]
    M.D. Jiang, G.N. Qian, X.Z. Liao, et al., Revisiting the capacity-fading mechanism of P2-type sodium layered oxide cathode materials during high-voltage cycling, J. Energy Chem., 69(2022), p. 16. doi: 10.1016/j.jechem.2022.01.010
    [24]
    R. House, U. Maitra, L.Y. Jin, et al., What triggers oxygen loss in oxygen redox cathode materials?, Chem. Mater., 31(2019), No. 9, p. 3293. doi: 10.1021/acs.chemmater.9b00227
    [25]
    Y.C. Liu, C.C. Wang, S. Zhao, et al., Mitigation of Jahn–Teller distortion and Na+/vacancy ordering in a distorted manganese oxide cathode material by Li substitution, Chem. Sci., 12(2021), No. 3, p. 1062. doi: 10.1039/D0SC05427E
    [26]
    L.J. Wang, Y.Z. Wang, J.B. Zhao, Y.H. Li, J.L. Wang, and X.H. Yang, Nb5+-doped P2-type Mn-based layered oxide cathode with an excellent high-rate cycling stability for sodium-ion batteries, Ionics, 25(2019), No. 10, p. 4775. doi: 10.1007/s11581-019-03035-z
    [27]
    J.L. Zhang, J.B. Kim, J. Zhang, et al., Regulating Pseudo–Jahn–Teller effect and superstructure in layered cathode materials for reversible alkali-ion intercalation, J. Am. Chem. Soc., 144(2022), No. 17, p. 7929. doi: 10.1021/jacs.2c02875
    [28]
    J.L. Zhang, W.H. Wang, W. Wang, S.W. Wang, and B.H. Li, Comprehensive review of P2-type Na2/3Ni1/3Mn2/3O2, a potential cathode for practical application of Na-ion batteries, ACS Appl. Mater. Interfaces, 11(2019), No. 25, p. 22051. doi: 10.1021/acsami.9b03937
    [29]
    Y.L. Liu, D. Wang, H.Y. Li, et al., Research progress in O3-type phase Fe/Mn/Cu-based layered cathode materials for sodium ion batteries, J. Mater. Chem. A, 10(2022), No. 8, p. 3869. doi: 10.1039/D1TA10329F
    [30]
    H. Fang, H.C. Ji, J.J. Zhai, et al., Mitigating jahn–teller effect in layered cathode material via interstitial doping for high-performance sodium-ion batteries, Small, 19(2023), No. 35, art. No. 2301360. doi: 10.1002/smll.202301360
    [31]
    X.H. Yang, Y.Z. Wang, J.L. Wang, J.Y. Deng, and X. Zhang, Superior cyclability of Ce-doped P2-Na0.67Co0.20Mn0.80O2 cathode for sodium storage, J. Phys. Chem. Solids, 148(2021), art. No. 109750. doi: 10.1016/j.jpcs.2020.109750
    [32]
    W.C. Qin, Y. Liu, J.F. Liu, Z.H. Yang, and Q.Q. Liu, Boosting the ionic transport and structural stability of Zn-doped O3-type NaNi1/3Mn1/3Fe1/3O2 cathode material for half/full sodium-ion batteries, Electrochim. Acta, 418(2022), art. No. 140357. doi: 10.1016/j.electacta.2022.140357
    [33]
    L. Zhang, T. Yuan, L.K. Soule, et al., Enhanced ionic transport and structural stability of Nb-doped O3-NaFe0.55Mn0.45– xNb xO2 cathode material for long-lasting sodium-ion batteries, ACS Appl. Energy Mater., 3(2020), No. 4, p. 3770. doi: 10.1021/acsaem.0c00238
    [34]
    H. Zhao, J.Z. Li, W.P. Liu, et al., Integrated titanium-substituted air stable O3 sodium layered oxide electrode via a complexant assisted route for high capacity sodium-ion battery, Electrochim. Acta, 388(2021), art. No. 138561. doi: 10.1016/j.electacta.2021.138561
    [35]
    Y.H. Feng, Z.W. Cheng, C.L. Xu, et al., Low-cost Al-doped layered cathodes with improved electrochemical performance for rechargeable sodium-ion batteries, ACS Appl. Mater. Interfaces, 14(2022), No. 20, p. 23465. doi: 10.1021/acsami.2c03469
    [36]
    J. Feng, S.H. Luo, J.C. Wang, et al., Stable electrochemical properties of magnesium-doped co-free layered P2-type Na0.67Ni0.33Mn0.67O2 cathode material for sodium ion batteries, ACS Sustainable Chem. Eng., 10(2022), No. 15, p. 4994. doi: 10.1021/acssuschemeng.2c00197
    [37]
    W. Ko, M.K. Cho, J. Kang, et al., Exceptionally increased reversible capacity of O3-type NaCrO2 cathode by preventing irreversible phase transition, Energy Storage Mater., 46(2022), p. 289. doi: 10.1016/j.ensm.2022.01.023
    [38]
    Y.F. Wen, J.J. Fan, C.G. Shi, et al., Probing into the working mechanism of Mg versus Co in enhancing the electrochemical performance of P2-Type layered composite for sodium-ion batteries, Nano Energy, 60(2019), p. 162. doi: 10.1016/j.nanoen.2019.02.074
    [39]
    G.Q. Su, L.J. Li, Z. Shi, X.B. Ma, L. Ma, and Z.J. Cao, Boosting anionic redox through lithium doping in P2-layered cathode for high-performance sodium-ion batteries, Appl. Surf. Sci., 608(2023), art. No. 155097. doi: 10.1016/j.apsusc.2022.155097
    [40]
    L.J. Li, G.Q. Su, C. Lu, et al., Effect of lithium doping in P2-Type layered oxide cathodes on the electrochemical performances of Sodium-Ion batteries, Chem. Eng. J., 446(2022), art. No. 136923. doi: 10.1016/j.cej.2022.136923
    [41]
    Z.Y. Li, X.B. Ma, K. Sun, L.F. He, Y.Q. Li, and D.F. Chen, Na2/3Li1/9[Ni2/9Li1/9Mn2/3]O2: A high-performance solid-solution reaction layered oxide cathode material for sodium-ion batteries, ACS Appl. Energy Mater., 5(2022), No. 1, p. 1126. doi: 10.1021/acsaem.1c03483
    [42]
    Q. Huang, M.Y. Wang, L. Zhang, et al., Shear-resistant interface of layered oxide cathodes for sodium ion batteries, Energy Storage Mater., 45(2022), p. 389. doi: 10.1016/j.ensm.2021.11.041
    [43]
    L.T. Yang, L.Y. Kuo, J.M. López del Amo, et al., Structural aspects of P2-type Na0.67Mn0.6Ni0.2Li0.2O2 (MNL) stabilization by lithium defects as a cathode material for sodium-ion batteries, Adv. Funct. Mater., 31(2021), No. 38, art. No. 2102939. doi: 10.1002/adfm.202102939
    [44]
    Y.S. Wang, Z.M. Feng, P.X. Cui, et al., Pillar-beam structures prevent layered cathode materials from destructive phase transitions, Nat. Commun., 12(2021), No. 1, art. No. 13. doi: 10.1038/s41467-020-20169-1
    [45]
    C.C. Wang, L.J. Liu, S. Zhao, et al., Tuning local chemistry of P2 layered-oxide cathode for high energy and long cycles of sodium-ion battery, Nat. Commun., 12(2021), No. 1, art. No. 2256. doi: 10.1038/s41467-021-22523-3
    [46]
    G.X. Tang, Z.W. Chen, Z.Y. Lin, et al., K+-doped P2-Na0.67Fe0.5Mn0.5O2 cathode for highly enhanced rate performance sodium-ion battery, J. Alloys Compd., 947(2023), art. No. 169482. doi: 10.1016/j.jallcom.2023.169482
    [47]
    X.Y. Li, J.Z. Miao, H.W. Long, et al., Sodium-storage performance of K+-intercalated Na xCu0.2Mn0.8O2, ACS Appl. Energy Mater., 5(2022), No. 3, p. 2758. doi: 10.1021/acsaem.1c03324
    [48]
    Q. Zhang, Y.Y. Huang, Y. Liu, et al., F-doped O3-NaNi1/3Fe1/3Mn1/3O2 as high-performance cathode materials for sodium-ion batteries, Sci. China Mater., 60(2017), No. 7, p. 629. doi: 10.1007/s40843-017-9045-9
    [49]
    H.L. Hu, H.C. He, R.K. Xie, et al., Achieving reversible Mn2+/Mn4+ double redox couple through anionic substitution in a P2-type layered oxide cathode, Nano Energy, 99(2022), art. No. 107390. doi: 10.1016/j.nanoen.2022.107390
    [50]
    G.L. Liu, W.L. Xu, J.H. Wu, et al., Unlocking high-rate O3 layered oxide cathode for Na-ion batteries via ion migration path modulation, J. Energy Chem., 83(2023), p. 53. doi: 10.1016/j.jechem.2023.04.029
    [51]
    S.Q. Liu, B.Y. Wang, X. Zhang, S. Zhao, Z.H. Zhang, and H.J. Yu, Reviving the lithium-manganese-based layered oxide cathodes for lithium-ion batteries, Matter, 4(2021), No. 5, p. 1511. doi: 10.1016/j.matt.2021.02.023
    [52]
    K. Liu, S.S. Tan, J. Moon, et al., Insights into the enhanced cycle and rate performances of the F-substituted P2-type oxide cathodes for sodium-ion batteries, Adv. Energy Mater., 10(2020), No. 19, art. No. 2000135. doi: 10.1002/aenm.202000135
    [53]
    H. Chen, Z.G. Wu, Y.J. Zhong, et al., Boosting the reactivity of Ni2+/Ni3+ redox couple via fluorine doping of high performance Na0.6Mn0.95Ni0.05O2- xF x cathode, Electrochim. Acta, 308(2019), p. 64. doi: 10.1016/j.electacta.2019.04.003
    [54]
    C.J. Zhou, L.C. Yang, C.G. Zhou, et al., Fluorine-substituted O3-type NaNi0.4Mn0.25Ti0.3Co0.05O2− xF x cathode with improved rate capability and cyclic stability for sodium-ion storage at high voltage, J. Energy Chem., 60(2021), p. 341. doi: 10.1016/j.jechem.2021.01.038
    [55]
    W.P. Kang, P. Ma, Z.N. Liu, et al., Tunable electrochemical activity of P2-Na0.6Mn0.7Ni0.3O2– xF x microspheres as high-rate cathodes for high-performance sodium ion batteries, ACS Appl. Mater. Interfaces, 13(2021), No. 13, p. 15333. doi: 10.1021/acsami.1c02216
    [56]
    S.Y. Chu, D. Kim, G. Choi, et al., Revealing the origin of transition-metal migration in layered sodium-ion battery cathodes: Random Na extraction and Na-free layer formation, Angew. Chem. Int. Ed., 62(2023), No. 12, art. No. e202216174. doi: 10.1002/anie.202216174
    [57]
    H.R. Yao, P.F. Wang, Y. Gong, et al., Designing air-stable O3-type cathode materials by combined structure modulation for Na-ion batteries, J. Am. Chem. Soc., 139(2017), No. 25, p. 8440. doi: 10.1021/jacs.7b05176
    [58]
    H.R. Shi, J.Y. Li, M.J. Liu, et al., Multiple strategies toward advanced P2-type layered Na xMnO2 for low-cost sodium-ion batteries, ACS Appl. Energy Mater., 4(2021), No. 8, p. 8183. doi: 10.1021/acsaem.1c01449
    [59]
    R. Qi, M.H. Chu, W.G. Zhao, et al., A highly-stable layered Fe/Mn-based cathode with ultralow strain for advanced sodium-ion batteries, Nano Energy, 88(2021), art. No. 106206. doi: 10.1016/j.nanoen.2021.106206
    [60]
    Q. Liu, W. Zheng, G.Y. Liu, et al., Realizing high-performance cathodes with cationic and anionic redox reactions in high-sodium-content P2-type oxides for sodium-ion batteries, ACS Appl. Mater. Interfaces, 15(2023), No. 7, p. 9324. doi: 10.1021/acsami.2c20642
    [61]
    G.Q. Su, H.Q. Zheng, H. Chen, and S. Bao, Ca/Mg dual-doping P2-type Na0.67Ni0.17Co0.17Mn0.66O2 cathode material for sodium ion batteries, Mater. Lett., 331(2023), art. No. 133425. doi: 10.1016/j.matlet.2022.133425
    [62]
    K. Kubota, T. Asari, and S. Komaba, Impact of Ti and Zn dual-substitution in P2 type Na2/3Ni1/3Mn2/3O2 on Ni–Mn and Na-vacancy ordering and electrochemical properties, Adv. Mater., 35(2023), No. 26, art. No. 2300714. doi: 10.1002/adma.202300714
    [63]
    I. Lee, G. Oh, S. Lee, et al., Cationic and transition metal co-substitution strategy of O3-type NaCrO2 cathode for high-energy sodium-ion batteries, Energy Storage Mater., 41(2021), p. 183. doi: 10.1016/j.ensm.2021.05.046
    [64]
    T.L. Zhang, H.C. Ji, X.H. Hou, et al., Promoting the performances of P2-type sodium layered cathode by inducing Na site rearrangement, Nano Energy, 100(2022), art. No. 107482. doi: 10.1016/j.nanoen.2022.107482
    [65]
    Y.X. Zhang, G.Q. Liu, C. Su, et al., Study on the influence of Cu/F dual-doping on the Fe–Mn based compound as cathode material for sodium ion batteries, J. Power Sources, 536(2022), art. No. 231511. doi: 10.1016/j.jpowsour.2022.231511
    [66]
    M.S. Chae, H.J. Kim, J. Lyoo, et al., Anomalous sodium storage behavior in Al/F dual-doped P2-type sodium manganese oxide cathode for sodium-ion batteries, Adv. Energy Mater., 10(2020), No. 43, art. No. 2002205. doi: 10.1002/aenm.202002205
    [67]
    P.F. Zhou, J. Zhang, Z.N. Che, et al., Insights into the enhanced structure stability and electrochemical performance of Ti4+/F co-doped P2-Na0.67Ni0.33Mn0.67O2 cathodes for sodium ion batteries at high voltage, J. Energy Chem., 67(2022), p. 655. doi: 10.1016/j.jechem.2021.10.032
    [68]
    R.H. Nie, H.X. Chen, Y.T. Yang, C. Li, and H.M. Zhou, High-voltage layered manganese-based oxide cathode with excellent rate capability enabled by K/F co-doping, ACS Appl. Energy Mater., 6(2023), No. 4, p. 2358. doi: 10.1021/acsaem.2c03613
    [69]
    B. Peng, G.L. Wan, N. Ahmad, L. Yu, X.Y. Ma, and G.Q. Zhang, Recent progress in the emerging modification strategies for layered oxide cathodes toward practicable sodium ion batteries Adv. Energy Mater., 13(2023), No. 27, art. No. 2300334.
    [70]
    L.Y. Yang, S.W. Sun, K. Du, et al., Prompting structure stability of O3-NaNi0.5Mn0.5O2 via effective surface regulation based on atomic layer deposition, Ceram. Int., 47(2021), No. 20, p. 28521. doi: 10.1016/j.ceramint.2021.07.009
    [71]
    M.Z. Leng, J.Q. Bi, W.L. Wang, et al., Ultrathin MgO coating on fabricated O3-NaNi0.45Mn0.3Ti0.2Zr0.05O2 composite cathode via magnetron sputtering for enhanced kinetic and durable sodium-ion batteries, J. Alloys Compd., 855(2021), art. No. 157533. doi: 10.1016/j.jallcom.2020.157533
    [72]
    K. Kaliyappan, T. Or, Y.P. Deng, Y.F. Hu, Z.Y. Bai, and Z.W. Chen, Constructing safe and durable high-voltage P2 layered cathodes for sodium ion batteries enabled by molecular layer deposition of alucone, Adv. Funct. Mater., 30(2020), No. 17, art. No. 1910251. doi: 10.1002/adfm.201910251
    [73]
    S. Bao, S.H. Luo, and J.L. Lu, Preparation and optimization of ZrO2 modified P2-type Na2/3Ni1/6Co1/6Mn2/3O2 with enhanced electrochemical performance as cathode for sodium ion batteries, Ceram. Int., 46(2020), No. 10, p. 16080. doi: 10.1016/j.ceramint.2020.03.160
    [74]
    Y.Z. Wang and J.T. Tang, CeO2-modified P2-Na–Co–Mn–O cathode with enhanced sodium storage characteristics, RSC Adv., 8(2018), No. 43, p. 24143. doi: 10.1039/C8RA04210A
    [75]
    Y.J. Chang, G.H. Xie, Y.M. Zhou, et al., Enhancing storage performance of P2-type Na2/3Fe1/2Mn1/2O2 cathode materials by Al2O3 coating, Trans. Nonferrous Met. Soc. China, 32(2022), No. 1, p. 262. doi: 10.1016/S1003-6326(22)65792-3
    [76]
    Y.Q. Shao, X.X. Wang, B.C. Li, et al., Functional surface modification of P2-type layered Mn-based oxide cathode by thin layer of NASICON for sodium-ion batteries, Electrochim. Acta, 442(2023), art. No. 141915. doi: 10.1016/j.electacta.2023.141915
    [77]
    D. Lu, Z.J. Yao, Y. Zhong, et al., Polypyrrole-coated sodium manganate hollow microspheres as a superior cathode for sodium ion batteries, ACS Appl. Mater. Interfaces, 11(2019), No. 17, p. 15630. doi: 10.1021/acsami.9b02555
    [78]
    K. Kaliyappan, G.R. Li, L. Yang, Z.Y. Bai, and Z.W. Chen, An ion conductive polyimide encapsulation: New insight and significant performance enhancement of sodium based P2 layered cathodes, Energy Storage Mater., 22(2019), p. 168. doi: 10.1016/j.ensm.2019.07.010
    [79]
    J.L. Lin, Q. Huang, K. Dai, et al., Mitigating interfacial instability of high-voltage sodium layered oxide cathodes with coordinative polymeric structure, J. Power Sources, 552(2022), art. No. 232235. doi: 10.1016/j.jpowsour.2022.232235
    [80]
    T.C. Liu, L. Yu, J. Lu, et al., Rational design of mechanically robust Ni-rich cathode materials via concentration gradient strategy, Nat. Commun., 12(2021), No. 1, art. No. 6024. doi: 10.1038/s41467-021-26290-z
    [81]
    N.S. Gao, Y.W. Guo, Y.H. Chen, et al., Improved electrochemical performance of P2-type concentration-gradient cathode material Na0.65Ni0.16Co0.14Mn0.7O2 with Mn-rich core for sodium-ion batteries, J. Alloys Compd., 958(2023), art. No. 170386. doi: 10.1016/j.jallcom.2023.170386
    [82]
    J.Y. Hwang, S.M. Oh, S.T. Myung, K.Y. Chung, I. Belharouak, and Y.K. Sun, Radially aligned hierarchical columnar structure as a cathode material for high energy density sodium-ion batteries, Nat. Commun., 6(2015), art. No. 6865. doi: 10.1038/ncomms7865
    [83]
    S. Bao, S.H. Luo, Z.Y. Wang, S.X. Yan, Q. Wang, and J.Y. Li, Novel P2-type concentration-gradient Na0.67Ni0.167Co0.167Mn0.67O2 modified by Mn-rich surface as cathode material for sodium ion batteries, J. Power Sources, 396(2018), p. 404. doi: 10.1016/j.jpowsour.2018.06.050
    [84]
    S.H. Guo, Q. Li, P. Liu, M.W. Chen, and H.S. Zhou, Environmentally stable interface of layered oxide cathodes for sodium-ion batteries, Nat. Commun., 8(2017), No. 1, art. No. 135. doi: 10.1038/s41467-017-00157-8
    [85]
    C. Hakim, H.D. Asfaw, R. Younesi, D. Brandell, K. Edström, and I. Saadoune, Development of P2 or P2/P3 cathode materials for sodium-ion batteries by controlling the Ni and Mn contents in Na0.7Co xMn yNi zO2 layered oxide, Electrochim. Acta, 438(2023), art. No. 141540. doi: 10.1016/j.electacta.2022.141540
    [86]
    B.W. Xiao, X. Liu, M. Song, et al., A general strategy for batch development of high-performance and cost-effective sodium layered cathodes, Nano Energy, 89(2021), art. No. 106371. doi: 10.1016/j.nanoen.2021.106371
    [87]
    J.M. Feng, D. Fang, Z. Yang, et al., A novel P2/O3 composite cathode toward synergistic electrochemical optimization for sodium ion batteries, J. Power Sources, 553(2023), art. No. 232292. doi: 10.1016/j.jpowsour.2022.232292
    [88]
    L.Z. Yu, Z.W. Cheng, K. Xu, et al., Interlocking biphasic chemistry for high-voltage P2/O3 sodium layered oxide cathode, Energy Storage Mater., 50(2022), p. 730. doi: 10.1016/j.ensm.2022.06.012
    [89]
    J. Darga and A. Manthiram, Facile synthesis of O3-type NaNi0.5Mn0.5O2 single crystals with improved performance in sodium-ion batteries, ACS Appl. Mater. Interfaces, 14(2022), No. 47, p. 52729. doi: 10.1021/acsami.2c12098
    [90]
    J. Lamb, K. Jarvis, and A. Manthiram, Molten-salt synthesis of O3-Type layered oxide single crystal cathodes with controlled morphology towards long-life sodium-ion batteries, Small, 18(2022), No. 43, art. No. 2106927. doi: 10.1002/smll.202106927
    [91]
    B. Peng, Z.H. Zhou, J. Xu, et al., Crystal facet design in layered oxide cathode enables low-temperature sodium-ion batteries, ACS Materials Lett., 5(2023), No. 8, p. 2233. doi: 10.1021/acsmaterialslett.3c00625
    [92]
    Y. Xiao, P.F. Wang, Y.X. Yin, et al., Exposing{010}active facets by multiple-layer oriented stacking nanosheets for high-performance capacitive sodium-ion oxide cathode, Adv. Mater., 30(2018), No. 40, art. No. 1803765. doi: 10.1002/adma.201803765
    [93]
    F.P. Zhang, Y. Lu, Y. Guo, et al., Highly stabilized single-crystal P2-type layered oxides obtained via rational crystal orientation modulation for sodium-ion batteries, Chem. Eng. J., 458(2023), art. No. 141515. doi: 10.1016/j.cej.2023.141515
    [94]
    N. Bucher, S. Hartung, A. Nagasubramanian, Y.L. Cheah, H.E. Hoster, and S. Madhavi, Layered Na xMnO2+ z in sodium ion batteries-influence of morphology on cycle performance, ACS Appl. Mater. Interfaces, 6(2014), No. 11, p. 8059. doi: 10.1021/am406009t
    [95]
    K. Kaliyappan, W. Xaio, T.K. Sham, and X.L. Sun, High tap density co and Ni containing P2-Na0.66MnO2 buckyballs: A promising high voltage cathode for stable sodium-ion batteries, Adv. Funct. Mater., 28(2018), No. 32, art. No. 1801898. doi: 10.1002/adfm.201801898
    [96]
    S. Wang, F. Chen, X.D. He, et al., Self-template synthesis of NaCrO2 submicrospheres for stable sodium storage, ACS Appl. Mater. Interfaces, 13(2021), No. 10, p. 12203. doi: 10.1021/acsami.0c23069
    [97]
    Y.C. Liu, Q.Y. Shen, X.D. Zhao, et al., Hierarchical engineering of porous P2-Na2/3Ni1/3Mn2/3O2 nanofibers assembled by nanoparticles enables superior sodium-ion storage cathodes, Adv. Funct. Mater., 30(2020), No. 6, art. No. 1907837. doi: 10.1002/adfm.201907837
    [98]
    L.W. Liang, X. Sun, D.K. Denis, et al., Ultralong layered NaCrO2 nanowires: A competitive wide-temperature-operating cathode for extraordinary high-rate sodium-ion batteries, ACS Appl. Mater. Interfaces, 11(2019), No. 4, p. 4037. doi: 10.1021/acsami.8b20149
    [99]
    S. Kalluri, K.H. Seng, W.K. Pang, et al., Electrospun P2-type Na2/3(Fe1/2Mn1/2)O2 hierarchical nanofibers as cathode material for sodium-ion batteries, ACS Appl. Mater. Interfaces, 6(2014), No. 12, p. 8953. doi: 10.1021/am502343s
    [100]
    M.J. Aragón, P. Lavela, G. Ortiz, R. Alcántara, and J.L. Tirado, Nanometric P2-Na2/3Fe1/3Mn2/3O2 with controlled morphology as cathode for sodium-ion batteries, J. Alloys Compd., 724(2017), p. 465. doi: 10.1016/j.jallcom.2017.07.044
    [101]
    J. Molenda, A. Milewska, W. Zając, et al., Impact of O3/P3 phase transition on the performance of the Na xTi1/6Mn1/6Fe1/6Co1/6Ni1/6Cu1/6O2 cathode material for Na-ion batteries, J. Mater. Chem. A, 11(2023), No. 8, p. 4248. doi: 10.1039/D2TA08431G
    [102]
    C.L. Zhao, F.X. Ding, Y.X. Lu, L.Q. Chen, and Y.S. Hu, High-entropy layered oxide cathodes for sodium-ion batteries, Angew. Chem. Int. Ed., 59(2020), No. 1, p. 264. doi: 10.1002/anie.201912171
    [103]
    Z.Y. Gu, J.Z. Guo, J.M. Cao, et al., An advanced high-entropy fluorophosphate cathode for sodium-ion batteries with increased working voltage and energy density, Adv. Mater., 34(2022), No. 14, art. No. 2110108. doi: 10.1002/adma.202110108
    [104]
    B.S. Murty, J.W. Yeh, and S. Ranganathan, High Entropy Alloys, Butterworth-Heinemann, Oxford, 2014.
    [105]
    A. Sarkar, Q.S. Wang, A. Schiele, et al., High-entropy oxides: Fundamental aspects and electrochemical properties, Adv. Mater., 31(2019), No. 26, art. No. 1806236. doi: 10.1002/adma.201806236
    [106]
    G. Anand, A.P. Wynn, C.M. Handley, and C.L. Freeman, Phase stability and distortion in high-entropy oxides, Acta Mater., 146(2018), p. 119. doi: 10.1016/j.actamat.2017.12.037
    [107]
    K. Walczak, A. Plewa, C. Ghica, et al., NaMn0.2Fe0.2Co0.2Ni0.2Ti0.2O2 high-entropy layered oxide–experimental and theoretical evidence of high electrochemical performance in sodium batteries, Energy Storage Mater., 47(2022), p. 500. doi: 10.1016/j.ensm.2022.02.038
    [108]
    P.F. Zhou, Z.N. Che, J. Liu, et al., High-entropy P2/O3 biphasic cathode materials for wide-temperature rechargeable sodium-ion batteries, Energy Storage Mater., 57(2023), p. 618. doi: 10.1016/j.ensm.2023.03.007
    [109]
    W.L. Xu, R.B. Dang, L. Zhou, et al., Conversion of surface residual alkali to solid electrolyte to enable Na-ion full cells with robust interfaces, Adv. Mater., 35(2023), No. 42, art. No. 2301314. doi: 10.1002/adma.202301314
    [110]
    X.Y. Li, L.W. Liang, M.S. Su, et al., Multi-level modifications enabling chemomechanically stable Ni-rich O3-Layered cathode toward wide-temperature-tolerance quasi-solid-state Na-ion batteries, Adv. Energy Mater., 13(2023), No. 9, art. No. 2203701. doi: 10.1002/aenm.202203701
    [111]
    X.C. Feng, Y. Li, Q.H. Shi, et al., A comprehensive modification enables the high rate capability of P2-Na0.75Mn0.67Ni0.33O2 for sodium-ion cathode materials, J. Energy Chem., 69(2022), p. 442. doi: 10.1016/j.jechem.2022.01.032
    [112]
    S.Y. Zhao, Q.H. Shi, R.J. Qi, et al., NaTi2(PO4)3 modified O3-type NaNi1/3Fe1/3Mn1/3O2 as high rate and air stable cathode for sodium-ion batteries, Electrochim. Acta, 441(2023), art. No. 141859. doi: 10.1016/j.electacta.2023.141859
    [113]
    H.B. Wang, F.X. Ding, Y.Q. Wang, et al. , In situ plastic-crystal-coated cathode toward high-performance Na-ion batteries, ACS Energy Lett., 8(2023), No. 3, p. 1434. doi: 10.1021/acsenergylett.3c00009
    [114]
    M.L. Xu, M.C. Liu, Z.Z. Yang, C. Wu, and J.F. Qian, Research progress on presodiation strategies for high energy sodium-ion batteries, Acta Phys. Chim. Sin., 39(2023), No. 3, art. No. 2210043.
    [115]
    P.Y. Li, N.Q. Hu, J.Y. Wang, S.C. Wang, and W.W. Deng, Recent progress and perspective: Na ion batteries used at low temperatures, Nanomaterials, 12(2022), No. 19, art. No. 3529. doi: 10.3390/nano12193529
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(1)

    Share Article

    Article Metrics

    Article Views(1501) PDF Downloads(63) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return