Wenxiong Chen and Honglong Xing, Construction of enhanced multi-polarization and high performance electromagnetic wave absorption by self-growing ZnFe2O4 on Cu9S5, Int. J. Miner. Metall. Mater., 31(2024), No. 8, pp. 1922-1934. https://doi.org/10.1007/s12613-023-2795-2
Cite this article as:
Wenxiong Chen and Honglong Xing, Construction of enhanced multi-polarization and high performance electromagnetic wave absorption by self-growing ZnFe2O4 on Cu9S5, Int. J. Miner. Metall. Mater., 31(2024), No. 8, pp. 1922-1934. https://doi.org/10.1007/s12613-023-2795-2
Research Article

Construction of enhanced multi-polarization and high performance electromagnetic wave absorption by self-growing ZnFe2O4 on Cu9S5

+ Author Affiliations
  • Corresponding author:

    Honglong Xing    E-mail: austxhl@163.com

  • Received: 3 August 2023Revised: 15 November 2023Accepted: 22 November 2023Available online: 25 November 2023
  • The development of 3D structural composites with electromagnetic (EM) wave absorption could attenuate EM waves. Herein, magnetized flower-like Cu9S5/ZnFe2O4 composites were fabricated through a multistep hydrothermal method. The crystallographic and surface phase chemical information, morphological structure, and magnetic and EM parameters of the composites were analyzed. The prepared Cu9S5/ZnFe2O4 composites have multiple loss paths for EM waves and present an overall 3D flower-like structure. The Cu9S5/ZnFe2O4 composites exhibit a minimum reflection loss of −54.38 dB and a broad effective absorption bandwidth of 5.92 GHz. Through magnetization, ZnFe2O4 particles are self-assembled and grown on the surfaces of Cu9S5. Such a modification is conducive to the generation of additional cross-linking contact sites and the effective introduction of a large number of phase interfaces, crystalline defects, special three-dimensional flower-like structures, and magneto–electrical coupling loss effects. Moreover, the synergistic effect of multiple loss strategies effectively improves EM wave absorption by the material. This work can provide a strategy for the use of magnetization-modified sulfide composite functional materials in EM wave absorption.
  • loading
  • Supplementary Information-s12613-023-2795-2.docx
  • [1]
    X. Yang, Y.P. Duan, S.Q. Li, et al., Constructing three-dimensional reticulated carbonyl iron/carbon foam composites to achieve temperature-stable broadband microwave absorption performance, Carbon, 188(2022), p. 376. doi: 10.1016/j.carbon.2021.12.044
    [2]
    L. Wang, M.Q. Huang, X.F. Yu, et al., Engineering polarization surface of hierarchical ZnO microspheres via spray-annealing strategy for wide-frequency electromagnetic wave absorption, J. Mater. Sci. Technol., 131(2022), p. 231. doi: 10.1016/j.jmst.2022.05.015
    [3]
    J. Cheng, C. Li, Y. Xiong, et al., Recent advances in design strategies and multifunctionality of flexible electromagnetic interference shielding materials, Nano-Micro Lett., 14(2022), No. 1, art. No. 80. doi: 10.1007/s40820-022-00823-7
    [4]
    H.D. Sun, Y. Zhang, Y. Wu, et al., Broadband absorption of macro pyramid structure based flame retardant absorbers, J. Mater. Sci. Technol., 128(2022), p. 228. doi: 10.1016/j.jmst.2022.04.030
    [5]
    J.Y. Liu, Y.P. Duan, T. Zhang, L.X. Huang, and H.F. Pang, Dual-polarized and real-time reconfigurable metasurface absorber with infrared-coded remote-control system, Nano Res., 15(2022), No. 8, p. 7498. doi: 10.1007/s12274-022-4528-7
    [6]
    L. Wang, M.Q. Huang, X. Qian, et al., Confined magnetic-dielectric balance boosted electromagnetic wave absorption, Small, 17(2021), No. 30, art. No. e2100970. doi: 10.1002/smll.202100970
    [7]
    M. Zhang, M.S. Cao, Q.Q. Wang, et al., A multifunctional stealthy material for wireless sensing and active camouflage driven by configurable polarization, J. Mater. Sci. Technol., 132(2023), p. 42. doi: 10.1016/j.jmst.2022.05.046
    [8]
    Y. Zheng, C.Y. Li, L.H. Qi, et al., Reduced graphene oxide-supported boron and nitrogen co-doped carbon nanotubes with embedded cobalt nanoparticles for absorption of electromagnetic wave, J. Alloys Compd., 865(2021), art. No. 158967. doi: 10.1016/j.jallcom.2021.158967
    [9]
    A.K. Darboe, X. Qi, X. Gong, et al., Constructing MoSe2/MoS2 and MoS2/MoSe2 inner and outer-interchangeable flower-like heterojunctions: A combined strategy of interface polarization and morphology configuration to optimize microwave absorption performance, J. Colloid Interface Sci., 624(2022), p. 204. doi: 10.1016/j.jcis.2022.05.078
    [10]
    B. Shi, H.S. Liang, Z.J. Xie, Q. Chang, and H.J. Wu, Dielectric loss enhancement induced by the microstructure of CoFe2O4 foam to realize broadband electromagnetic wave absorption, Int. J. Miner. Metall. Mater., 30(2023), No. 7, p. 1388. doi: 10.1007/s12613-023-2599-4
    [11]
    L. Wang, Y.T. Qian, J.M. Du, et al., Facile synthesis of cactus-shaped CdS–Cu9S5 heterostructure on copper foam with enhanced photoelectrochemical performance, Appl. Surf. Sci., 492(2019), p. 849. doi: 10.1016/j.apsusc.2019.06.264
    [12]
    L. Chen, Y.B. Li, B. Zhao, et al., Multiprincipal element M2FeC (M = Ti, V, Nb, Ta, Zr) MAX phases with synergistic effect of dielectric and magnetic loss, Adv. Sci., 10(2023), No. 10, art. No. 2206877. doi: 10.1002/advs.202206877
    [13]
    Y.P. Duan, H.F. Pang, and H. Zhang, Structure and composition design on ternary CNT@ZnFe2O4@ZnO composite utilized as enhanced microwave absorbing materials, Diam. Relat. Mater., 120(2021), art. No. 108701. doi: 10.1016/j.diamond.2021.108701
    [14]
    G.L. Wu, H.J. Wu, and Z.R. Jia, Editorial for special issue on electromagnetic wave absorbing materials, Int. J. Miner. Metall. Mater., 30(2023), No. 3, p. 401. doi: 10.1007/s12613-022-2578-1
    [15]
    F. Tao, M. Green, A.T.V. Tran, Y. Zhang, Y. Yin, and X. Chen, Plasmonic Cu9S5 nanonets for microwave absorption, ACS Appl. Nano Mater., 2(2019), No. 6, p. 3836. doi: 10.1021/acsanm.9b00700
    [16]
    J. Liao, M.Q. Ye, A.J. Han, J.M. Guo, Q.Z. Liu, and G.Q. Yu, Boosted electromagnetic wave absorption performance from multiple loss mechanisms in flower-like Cu9S5/RGO composites, Carbon, 177(2021), p. 115. doi: 10.1016/j.carbon.2021.02.060
    [17]
    J.T. Zhou, B. Wei, M.Q. Wang, et al., Three dimensional flower like ZnFe2O4 ferrite loaded graphene: Enhancing microwave absorption performance by constructing microcircuits, J. Alloys Compd., 889(2021), art. No. 161734. doi: 10.1016/j.jallcom.2021.161734
    [18]
    G.M. Li, X.J. Xue, L.T. Mao, et al., Recycling and utilization of coal gasification residues for fabricating Fe/C composites as novel microwave absorbents, Int. J. Miner. Metall. Mater., 30(2023), No. 3, p. 591. doi: 10.1007/s12613-022-2534-0
    [19]
    C.Y. Xu, P.B. Liu, Z.C. Wu, et al., Customizing heterointerfaces in multilevel hollow architecture constructed by magnetic spindle arrays using the polymerizing-etching strategy for boosting microwave absorption, Adv. Sci., 9(2022), No. 17, art. No. 2200804. doi: 10.1002/advs.202200804
    [20]
    R. Cai, W. Zheng, P.A. Yang, et al., Microstructure, electromagnetic properties, and microwave absorption mechanism of SiO2–MnO–Al2O3 based manganese ore powder for electromagnetic protection, Molecules, 27(2022), No. 12, art. No. 3758. doi: 10.3390/molecules27123758
    [21]
    J.R. Di, Y.P. Duan, H.F. Pang, X.R. Ma, and J. Liu, Sintering-regulated two-dimensional plate@shell basalt@NiO heterostructure for enhanced microwave absorption, Appl. Surf. Sci., 574(2022), art. No. 151590. doi: 10.1016/j.apsusc.2021.151590
    [22]
    M.Q. Huang, L. Wang, W.B. You, and R.C. Che, Single zinc atoms anchored on MOF-derived N-doped carbon shell cooperated with magnetic core as an ultrawideband microwave absorber, Small, 17(2021), No. 30, art. No. e2101416. doi: 10.1002/smll.202101416
    [23]
    Z. Zhang, J.Y. Sun, S.D. Mo, et al., Constructing a highly efficient CuS/Cu9S5 heterojunction with boosted interfacial charge transfer for near-infrared photocatalytic disinfection, Chem. Eng. J., 431(2022), art. No. 134287. doi: 10.1016/j.cej.2021.134287
    [24]
    D.M. Xu, Y.F. Yang, K. Le, et al., Bifunctional Cu9S5/C octahedral composites for electromagnetic wave absorption and supercapacitor applications, Chem. Eng. J., 417(2021), art. No. 129350. doi: 10.1016/j.cej.2021.129350
    [25]
    J. Liao, M.Q. Ye, A.J. Han, J.M. Guo, and C.L. Chen, Nanosheet architecture of Cu9S5 loaded with Fe3O4 microspheres for efficient electromagnetic wave absorption, Ceram. Int., 47(2021), No. 7, p. 8803. doi: 10.1016/j.ceramint.2020.11.246
    [26]
    G.L. Wu, H.X. Zhang, X.X. Luo, L.J. Yang, and H.L. Lv, Investigation and optimization of Fe/ZnFe2O4 as a wide-band electromagnetic absorber, J. Colloid Interface Sci., 536(2019), p. 548. doi: 10.1016/j.jcis.2018.10.084
    [27]
    R.W. Shu, J. Xu, Z.L. Wan, and X. Cao, Synthesis of hierarchical porous nitrogen-doped reduced graphene oxide/zinc ferrite composite foams as ultrathin and broadband microwave absorbers, J. Colloid Interface Sci., 608(2022), p. 2994. doi: 10.1016/j.jcis.2021.11.030
    [28]
    L.H. Bai, H.L. Xing, and X.L. Ji, Zinc aluminate nanoparticles modified with (D-xylose, adenine)-derived nitrogen-doped carbon nanosheet composites as high-efficiency microwave absorbents, Diam. Relat. Mater., 127(2022), art. No. 109150. doi: 10.1016/j.diamond.2022.109150
    [29]
    Z.R. Jia, M.Y. Kong, B.W. Yu, Y.Z. Ma, J.Y. Pan, and G.L. Wu, Tunable Co/ZnO/C@MWCNTs based on carbon nanotube-coated MOF with excellent microwave absorption properties, J. Mater. Sci. Technol., 127(2022), p. 153. doi: 10.1016/j.jmst.2022.04.005
    [30]
    H.X. Jia, H.L. Xing, X.L. Ji, and S.T. Gao, Self-template and in situ polymerization strategy to lightweight hollow MnO2@polyaniline core–shell heterojunction with excellent microwave absorption properties, Appl. Surf. Sci., 537(2021), art. No. 147857. doi: 10.1016/j.apsusc.2020.147857
    [31]
    H. Liu, H.L. Xing, R. Shi, and X.L. Ji, Facial synthesis of Al@MnO2 with enhanced microwave absorption and low infrared emissivity, J. Mater. Sci.: Mater. Electron., 31(2020), p. 18791. doi: 10.1007/s10854-020-04419-y
    [32]
    H.M. Hao, L.M. Wang, L.H. Xu, H. Pan, L.Q. Cao, and K.Q. Chen, Synthesis of hollow core–shell ZnFe2O4@C nanospheres with excellent microwave absorption properties, RSC Adv, 12(2022), No. 17, p. 10573. doi: 10.1039/D2RA01022D
    [33]
    L.H. Bai, H.L. Xing, X.L. Ji, and P. Yang, D-xylose-derived carbon microspheres modified by CuFe2O4 nanoparticles with excellent microwave absorption properties, J. Mater. Sci. Mater. Electron., 32(2021), No. 22, p. 26726. doi: 10.1007/s10854-021-07050-7
    [34]
    L.L. Deng, J.B. Zhang, and R.W. Shu, Fabrication of three-dimensional nitrogen-doped reduced graphene oxide/tin oxide composite aerogels as high-performance electromagnetic wave absorbers, J. Colloid Interface Sci., 602(2021), p. 282. doi: 10.1016/j.jcis.2021.06.029
    [35]
    X.C. Di, Y. Wang, Y.Q. Fu, X.M. Wu, and P. Wang, Wheat flour-derived nanoporous carbon@ZnFe2O4 hierarchical composite as an outstanding microwave absorber, Carbon, 173(2021), p. 174. doi: 10.1016/j.carbon.2020.11.006
    [36]
    D.M. Xu, Y.F. Yang, L.F. Lyu, et al., One-dimensional MnO@N-doped carbon nanotubes as robust dielectric loss electromagnetic wave absorbers, Chem. Eng. J., 410(2021), art. No. 128295. doi: 10.1016/j.cej.2020.128295
    [37]
    X.C. Zhang, M.J. Liu, J. Xu, et al., Flexible and waterproof nitrogen-doped carbon nanotube arrays on cotton-derived carbon fiber for electromagnetic wave absorption and electric-thermal conversion, Chem. Eng. J., 433(2022), art. No. 133794. doi: 10.1016/j.cej.2021.133794
    [38]
    S.T. Gao, Y.C. Zhang, H.L. Xing, and H.X. Li, Controlled reduction synthesis of yolk–shell magnetic@void@C for electromagnetic wave absorption, Chem. Eng. J., 387(2020), art. No. 124149. doi: 10.1016/j.cej.2020.124149
    [39]
    L. Chang, Y.Z. Wang, X.C. Zhang, L. Li, H.Z. Zhai, and M.S. Cao, Toward high performance microwave absorber by implanting La0.8CoO3 nanoparticles on rGO, J. Mater. Sci. Technol., 174(2024), p. 176. doi: 10.1016/j.jmst.2023.06.062
    [40]
    B. Huang, J.L. Yue, B.H. Fan, Y. Liu, and X.Z. Huang, Vertical carbon nanotubes arrays with controlled morphology on silicon carbide fibers for electromagnetic wave absorption, Ceram. Int., 48(2022), No. 13, p. 19375. doi: 10.1016/j.ceramint.2022.03.232
    [41]
    C.C. Gong, J.J. Jiang, J.W. Ding, et al., Graphene oxide supported yolk–shell ZnS/Ni3S4 with the adjustable air layer for high performance of electromagnetic wave absorber, J. Colloid Interface Sci., 617(2022), p. 620. doi: 10.1016/j.jcis.2022.03.005
    [42]
    H.L. Xing, J.X. Xie, and M.Q. Hu, Sheet-like NiCo2O4-interconnected multiwalled carbon nanotubes with high-performance electromagnetic wave absorption, J. Mater. Sci. - Mater. Electron., 33(2022), No. 1, p. 306. doi: 10.1007/s10854-021-07294-3
    [43]
    J.L. Wang, M. Zhou, Z.C. Xie, et al., Enhanced interfacial polarization of biomass-derived porous carbon with a low radar cross-section, J. Colloid Interface Sci., 612(2022), p. 146. doi: 10.1016/j.jcis.2021.12.162
    [44]
    R. Zhou, Y.S. Wang, Z.Y. Liu, Y.Q. Pang, J.X. Chen, and J. Kong, Digital light processing 3D-printed ceramic metamaterials for electromagnetic wave absorption, Nano-Micro Lett., 14(2022), No. 1, art. No. 122. doi: 10.1007/s40820-022-00865-x
    [45]
    J. Zhao, Y. Wei, Y. Zhang, and Q.G. Zhang, 3D flower-like hollow CuS@PANI microspheres with superb X-band electromagnetic wave absorption, J. Mater. Sci. Technol., 126(2022), p. 141. doi: 10.1016/j.jmst.2022.03.016
    [46]
    S.P. Wang, Z.Y. Liu, Q.C. Liu, et al., Promoting the microwave absorption performance of hierarchical CF@NiO/Ni composites via phase and morphology evolution, Int. J. Miner. Metall. Mater., 30(2023), No. 3, p. 494.
    [47]
    X. Yang, Y.P. Duan, S.Q. Li, et al., Bio-inspired microwave modulator for high-temperature electromagnetic protection, infrared stealth and operating temperature monitoring, Nano-Micro Lett., 14(2021), No. 1, art. No. 28.
    [48]
    J.B. Cheng, H.B. Zhao, A.N. Zhang, Y.Q. Wang, and Y.Z. Wang, Porous carbon/Fe composites from waste fabric for high-efficiency electromagnetic wave absorption, J. Mater. Sci. Technol., 126(2022), p. 266. doi: 10.1016/j.jmst.2022.02.051
    [49]
    T. Zhu, W. Shen, X.Y. Wang, Y.F. Song, and W. Wang, Paramagnetic CoS2@MoS2 core–shell composites coated by reduced graphene oxide as broadband and tunable high-performance microwave absorbers, Chem. Eng. J., 378(2019), art. No. 122159. doi: 10.1016/j.cej.2019.122159
    [50]
    X.J. Liu, Y.P. Duan, Y. Guo, et al., Microstructure design of high-entropy alloys through a multistage mechanical alloying strategy for temperature-stable megahertz electromagnetic absorption, Nano-Micro Lett., 14(2022), No. 1, art. No. 142. doi: 10.1007/s40820-022-00886-6
    [51]
    L.G. Ren, Y.Q. Wang, X. Zhang, Q.C. He, and G.L. Wu, Efficient microwave absorption achieved through in situ construction of core–shell CoFe2O4@mesoporous carbon hollow spheres, Int. J. Miner. Metall. Mater., 30(2023), No. 3, p. 504. doi: 10.1007/s12613-022-2509-1
    [52]
    Z.G. Gao, K. Yang, Z.H. Zhao, et al., Design principles in MOF-derived electromagnetic wave absorption materials: Review and perspective, Int. J. Miner. Metall. Mater., 30(2023), No. 3, p. 405. doi: 10.1007/s12613-022-2555-8
    [53]
    L.M. Song, C.W. Wu, Q. Zhi, et al., Multifunctional SiC aerogel reinforced with nanofibers and nanowires for high-efficiency electromagnetic wave absorption, Chem. Eng. J., 467(2023), art. No. 143518. doi: 10.1016/j.cej.2023.143518
    [54]
    Q.Q. Huang, Y. Zhao, Y. Wu, et al., A dual-band transceiver with excellent heat insulation property for microwave absorption and low infrared emissivity compatibility, Chem. Eng. J., 446(2022), art. No. 137279. doi: 10.1016/j.cej.2022.137279
    [55]
    X.T. Chen, M. Zhou, Y. Zhao, et al., Correction: Morphology control of eco-friendly chitosan-derived carbon aerogels for efficient microwave absorption at thin thickness and thermal stealth, Green Chem., 24(2022), No. 15, p. 6036. doi: 10.1039/D2GC90058K
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)

    Share Article

    Article Metrics

    Article Views(217) PDF Downloads(14) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return