Cite this article as: |
Levie Mweene, Gilsang Hong, Hee-Eun Jeong, Hee-won Kang, and Hyunjung Kim, Insights into the changes in the surface properties of goethite with Ni in the lattice in the presence of salicylhydroxamic acid: Experimental and density functional theory studies, Int. J. Miner. Metall. Mater., 31(2024), No. 4, pp. 665-677. https://doi.org/10.1007/s12613-023-2813-4 |
Hyunjung Kim E-mail: kshjkim@hanyang.ac.kr
Supplementary Information-s12613-023-2813-4.docx |
[1] |
G.T. Zhou, Y.L. Wang, T.G. Qi, et al., Comparison of the effects of Ti- and Si-containing minerals on goethite transformation in the Bayer digestion of goethitic bauxite, Int. J. Miner. Metall. Mater., 30(2023), No. 9, p. 1705. doi: 10.1007/s12613-023-2628-3
|
[2] |
S. Ilyas, R.R. Srivastava, H. Kim, N. Ilyas, and R. Sattar, Extraction of nickel and cobalt from a laterite ore using the carbothermic reduction roasting-ammoniacal leaching process, Sep. Purif. Technol., 232(2020), art. No. 115971. doi: 10.1016/j.seppur.2019.115971
|
[3] |
L. Mweene, A. Gomez-Flores, H.E. Jeong, S. Ilyas, and H. Kim, Challenges and future in Ni laterite ore enrichment: A critical review, Miner. Process. Extr. Metall. Rev., (2023), p. 1.
|
[4] |
O. Skurikhina, M. Senna, M. Fabián, et al., A sustainable reaction process for phase pure LiFeSi2O6 with goethite as an iron source, Ceram. Int., 46(2020), No. 10, p. 14894. doi: 10.1016/j.ceramint.2020.03.016
|
[5] |
A.J. Pinto, N. Sanchez-Pastor, and R. Santos Jorge, Electrochemical reactions driving Mn-enrichment in FeMn supergene ores: A mineralogical perspective, Chem. Geol., 630(2023), art. No. 121488. doi: 10.1016/j.chemgeo.2023.121488
|
[6] |
M.L. Jackson, Soil Chemical Analysis : Advanced Course, UW-Madison Libraries parallel press, Madison, 2005.
|
[7] |
L.C. Hsu, Y.M. Tzou, M.S. Ho, et al., Preferential phosphate sorption and Al substitution on goethite, Environ. Sci. Nano, 7(2020), No. 11, p. 3497. doi: 10.1039/C9EN01435G
|
[8] |
X.W. Zhang, L.J. Zhang, Y. Liu, et al., Mn-substituted goethite for uranium immobilization: A study of adsorption behavior and mechanisms, Environ. Pollut., 262(2020), art. No. 114184. doi: 10.1016/j.envpol.2020.114184
|
[9] |
K. Iwasaki and T. Yamamura, Whisker-like goethite nanoparticles containing cobalt synthesized in a wet process, Mater. Trans., 43(2002), No. 8, p. 2097. doi: 10.2320/matertrans.43.2097
|
[10] |
K. Inouye, K. Ichimura, K. Kaneko, and T. Ishikawa, The effect of copper(II) on the formation of γ-FeOOH, Corros. Sci., 16(1976), No. 8, p. 507. doi: 10.1016/S0010-938X(76)80028-5
|
[11] |
W.J. Wan, H.Y. Wu, Z.W. Wang, et al., Tailoring electronic structure of Ni–Fe oxide by V incorporation for effective electrocatalytic water oxidation, Appl. Surf. Sci., 611(2023), art. No. 155732. doi: 10.1016/j.apsusc.2022.155732
|
[12] |
National Center for Biotechnology Information, PubChem Compound Summary for Salicylhydroxamic Acid (CID 66644 ) [2023-07-06]. https://pubchem.ncbi.nlm.nih.gov/compound/Salicylhydroxamic-acid.
|
[13] |
Y.C. Miao, S.M. Wen, Q. Zuo, Z.H. Shen, Q. Zhang, and Q.C. Feng, Co-adsorption of NaOL/SHA composite collectors on cassiterite surfaces and its effect on surface hydrophobicity and floatability, Sep. Purif. Technol., 308(2023), art. No. 122954. doi: 10.1016/j.seppur.2022.122954
|
[14] |
Q.C. Feng, W.J. Zhao, S.M. Wen, and Q.B. Cao, Activation mechanism of lead ions in cassiterite flotation with salicylhydroxamic acid as collector, Sep. Purif. Technol., 178(2017), p. 193. doi: 10.1016/j.seppur.2017.01.053
|
[15] |
M.J. Tian, Z.Y. Gao, B. Ji, et al., Selective flotation of cassiterite from calcite with salicylhydroxamic acid collector and carboxymethyl cellulose depressant, Minerals, 8(2018), No. 8, art. No. 316. doi: 10.3390/min8080316
|
[16] |
W.Q. Qin, L.Y. Ren, Y.B. Xu, P.P. Wang, and X.H. Ma, Adsorption mechanism of mixed salicylhydroxamic acid and tributyl phosphate collectors in fine cassiterite electro-flotation system, J. Cent. South Univ., 19(2012), No. 6, p. 1711. doi: 10.1007/s11771-012-1197-9
|
[17] |
W.Q. Qin, Y.B. Xu, H. Liu, L.Y. Ren, and C.R. Yang, Flotation and surface behavior of cassiterite with salicylhydroxamic acid, Ind. Eng. Chem. Res., 50(2011), No. 18, p. 10778. doi: 10.1021/ie200800d
|
[18] |
S.M. Cao, Y.J. Cao, Y.F. Liao, and Z.L. Ma, Depression mechanism of strontium ions in bastnaesite flotation with salicylhydroxamic acid as collector, Minerals, 8(2018), No. 2, art. No. 66. doi: 10.3390/min8020066
|
[19] |
W.L. Xiong, J. Deng, K.L. Zhao, W.Q. Wang, Y.H. Wang, and D.Z. Wei, Bastnaesite, barite, and calcite flotation behaviors with salicylhydroxamic acid as the collector, Minerals, 10(2020), No. 3, art. No. 282. doi: 10.3390/min10030282
|
[20] |
W.J. Zhao, D.W. Liu, and Q.C. Feng, Enhancement of salicylhydroxamic acid adsorption by Pb(II) modified hemimorphite surfaces and its effect on floatability, Miner. Eng., 152(2020), art. No. 106373. doi: 10.1016/j.mineng.2020.106373
|
[21] |
H. Liu, W.Q. Zhao, J.H. Zhai, et al., Activation mechanism of lead(II) to ilmenite flotation using salicylhydroxamic acid as collector, Minerals, 10(2020), No. 6, art. No. 567. doi: 10.3390/min10060567
|
[22] |
Y.C. Miao, S.M. Wen, Q.C. Feng, and R.P. Liao, Enhanced adsorption of salicylhydroxamic acid on ilmenite surfaces modified by Fenton and its effect on floatability, Colloids Surf. A: Physicochem. Eng. Aspects, 626(2021), art. No. 127057. doi: 10.1016/j.colsurfa.2021.127057
|
[23] |
Q.Y. Meng, Z.T. Yuan, L.X. Li, J.W. Lu, and J.C. Yang, Modification mechanism of lead ions and its response to wolframite flotation using salicylhydroxamic acid, Powder Technol., 366(2020), p. 477. doi: 10.1016/j.powtec.2020.02.049
|
[24] |
U. Schwertmann, P. Cambier, and E. Murad, Properties of goethites of varying crystallinity, Clays Clay Miner., 33(1985), No. 5, p. 369. doi: 10.1346/CCMN.1985.0330501
|
[25] |
T. Hiemstra, W.H. van Riemsdijk, and G.H. Bolt, Multisite proton adsorption modeling at the solid/solution interface of (hydr)oxides: A new approach I. Model description and evaluation of intrinsic reaction constants, Journal of colloid and interface science, J. Colloid Interface Sci., 133(1989), No. 1, p. 91. doi: 10.1016/0021-9797(89)90284-1
|
[26] |
M.J. Frisch, G.W. Trucks, H.B. Schlegel, et al. , Gaussian 16, Revision C.01, Wallingford CT, 2016.
|
[27] |
C. Adamo, M. Cossi, G. Scalmani, and V. Barone, Accurate static polarizabilities by density functional theory: Assessment of the PBE0 model, Chem. Phys. Lett., 307(1999), No. 3-4, p. 265. doi: 10.1016/S0009-2614(99)00515-1
|
[28] |
C. Franchini, V. Bayer, R. Podloucky, J. Paier, and G. Kresse, Density functional theory study of MnO by a hybrid functional approach, Phys. Rev. B, 72(2005), No. 4, art. No. 045132. doi: 10.1103/PhysRevB.72.045132
|
[29] |
I. Barlocco, L.A. Cipriano, G. Di Liberto, and G. Pacchioni, Modeling hydrogen and oxygen evolution reactions on single atom catalysts with density functional theory: Role of the functional, Adv. Theory Simul., 6(2023), No. 10, art. No. 2200513. doi: 10.1002/adts.202200513
|
[30] |
J.Y. Tao, Q.Y. Zhang, and T.F. Liu, Polaron formation and transport in Bi2WO6 studied by DFT+ U and hybrid PBE0 functional approaches, Phys. Chem. Chem. Phys., 24(2022), No. 37, p. 22918. doi: 10.1039/D2CP02987A
|
[31] |
B.P. Pritchard, D. Altarawy, B. Didier, T.D. Gibson, and T.L. Windus, New basis set exchange: An open, up-to-date resource for the molecular sciences community, J. Chem. Inf. Model., 59(2019), No. 11, p. 4814. doi: 10.1021/acs.jcim.9b00725
|
[32] |
K.L. Schuchardt, B.T. Didier, T. Elsethagen, et al., Basis set exchange: A community database for computational sciences, J. Chem. Inf. Model., 47(2007), No. 3, p. 1045. doi: 10.1021/ci600510j
|
[33] |
F. Weigend and R. Ahlrichs, Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy, Phys. Chem. Chem. Phys., 7(2005), No. 18, p. 3297. doi: 10.1039/b508541a
|
[34] |
P.P. Poier, O. Adjoua, L. Lagardère, and J.P. Piquemal, Generalized many-body dispersion correction through random-phase approximation for chemically accurate density functional theory, J. Phys. Chem. Lett., 14(2023), No. 6, p. 1609. doi: 10.1021/acs.jpclett.2c03722
|
[35] |
Y.H. Shao, Y. Mei, D. Sundholm, and V.R.I. Kaila, Benchmarking the performance of time-dependent density functional theory methods on biochromophores, J. Chem. Theory Comput., 16(2020), No. 1, p. 587. doi: 10.1021/acs.jctc.9b00823
|
[36] |
R.F.W. Bader, Atoms in molecules, Acc. Chem. Res., 18(1985), No. 1, p. 9. doi: 10.1021/ar00109a003
|
[37] |
W. Humphrey, A. Dalke, and K. Schulten, VMD: Visual molecular dynamics, J. Mol. Graph., 14(1996), No. 1, p. 33. doi: 10.1016/0263-7855(96)00018-5
|
[38] |
M. Alvarez, E.E. Sileo, and E.H. Rueda, Structure and reactivity of synthetic Co-substituted goethites, Am. Mineral., 93(2008), No. 4, p. 584. doi: 10.2138/am.2008.2608
|
[39] |
S.J. Bai, J. Li, Y.X. Bi, J.Q. Yuan, S.M. Wen, and Z. Ding, Adsorption of sodium oleate at the microfine hematite/aqueous solution interface and its consequences for flotation, Int. J. Min. Sci. Technol., 33(2023), No. 1, p. 105. doi: 10.1016/j.ijmst.2022.09.012
|
[40] |
H. Wang, W.Z. Wang, and W.J. Jin, σ-hole bond vs π-hole bond: A comparison based on halogen bond, Chem. Rev., 116(2016), No. 9, p. 5072. doi: 10.1021/acs.chemrev.5b00527
|
[41] |
A. Bauzá, T.J. Mooibroek, and A. Frontera, The bright future of unconventional σ/π-hole interactions, ChemPhysChem, 16(2015), No. 12, p. 2496. doi: 10.1002/cphc.201500314
|
[42] |
L. Mweene, G. Prasad Khanal, J. Kawala, and S. Subramanian, Investigations into the flotation of molybdenite in the presence of chalcopyrite using (3S, 4S, 5S, 6R)-3, 4, 5, 6-tetrahydroxyoxane-2-carboxylate acid as a novel selective depressant: An experimental and theoretical perspective, J. Mol. Liq., 368(2022), art. No. 120661. doi: 10.1016/j.molliq.2022.120661
|
[43] |
K.S. Maiti, Ultrafast N–H vibrational dynamics of hydrogen-bonded cyclic amide reveal by 2DIR spectroscopy, Chem. Phys., 515(2018), p. 509. doi: 10.1016/j.chemphys.2018.10.003
|
[44] |
M.R.C. Fernandes, X.M. Huang, H.C.L. Abbenhuis, and E.J.M. Hensen, Lignin oxidation with an organic peroxide and subsequent aromatic ring opening, Int. J. Biol. Macromol., 123(2019), p. 1044. doi: 10.1016/j.ijbiomac.2018.11.105
|
[45] |
S. Loganathan and S. Sankaran, Surface chemical and selective flocculation studies on iron oxide and silica suspensions in the presence of xanthan gum, Miner. Eng., 160(2021), art. No. 106668. doi: 10.1016/j.mineng.2020.106668
|
[46] |
E.E. Platero, D. Scarano, A. Zecchina, G. Meneghini, and R. De Franceschi, Highly sintered nickel oxide: Surface morphology and FTIR investigation of CO adsorbed at low temperature, Surf. Sci., 350(1996), No. 1-3, p. 113. doi: 10.1016/0039-6028(95)01076-9
|
[47] |
M. Nowsath rifaya, T. Theivasanthi and M. Alagar, Chemical capping synthesis of nickel oxide nanoparticles and their characterizations studies, Nanosci. Nanotechnol., 2(2012), No. 5, p. 134. doi: 10.5923/j.nn.20120205.01
|
[48] |
T. Lu and F.W. Chen, Multiwfn: A multifunctional wavefunction analyzer, J. Comput. Chem., 33(2012), No. 5, p. 580. doi: 10.1002/jcc.22885
|
[49] |
H. Weng, Y. Yang, C. Zhang, et al., Insight into FeOOH-mediated advanced oxidation processes for the treatment of organic polluted wastewater, Chem. Eng. J., 453(2023), art. No. 139812. doi: 10.1016/j.cej.2022.139812
|
[50] |
X.Y. Lu, K.H. Ye, S.Q. Zhang, et al., Amorphous type FeOOH modified defective BiVO4 photoanodes for photoelectrochemical water oxidation, Chem. Eng. J., 428(2022), art. No. 131027. doi: 10.1016/j.cej.2021.131027
|
[51] |
L.B. Wu, L. Yu, B. McElhenny, et al., Rational design of core-shell-structured CoP x @FeOOH for efficient seawater electrolysis, Appl. Catal. B, 294(2021), art. No. 120256. doi: 10.1016/j.apcatb.2021.120256
|
[52] |
P. Politzer, J.S. Murray, and T. Clark, The π-hole revisited, Phys. Chem. Chem. Phys., 23(2021), No. 31, p. 16458. doi: 10.1039/D1CP02602J
|
[53] |
J.R. Zhang, Z.X. Wang, S.F. Liu, J.B. Cheng, W.Z. Li, and Q.Z. Li, Synergistic and diminutive effects between triel bond and regium bond: Attractive interactions between π-hole and σ-hole, Appl. Organomet. Chem., 33(2019), No. 4, art. No. e4806. doi: 10.1002/aoc.4806
|
[54] |
J.R. Zhang, Q.Z. Hu, Q.Z. Li, S. Scheiner, and S.F. Liu, Comparison of σ-hole and π-hole tetrel bonds in complexes of borazine with TH3F and F2TO/H2TO (T = C, Si, Ge), Int. J. Quantum Chem., 119(2019), No. 11, art. No. e25910. doi: 10.1002/qua.25910
|
[55] |
P. Politzer, J.S. Murray, and T. Clark, Explicit inclusion of polarizing electric fields in σ- and π-hole interactions, J. Phys. Chem. A, 123(2019), No. 46, p. 10123. doi: 10.1021/acs.jpca.9b08750
|
[56] |
T. Hiemstra and W.H. Van Riemsdijk, Fluoride adsorption on goethite in relation to different types of surface sites, J. Colloid Interface Sci., 225(2000), No. 1, p. 94. doi: 10.1006/jcis.1999.6697
|
[57] |
C.P. Schulthess and U. Ndu, Modeling the adsorption of hydrogen, sodium, chloride and phthalate on goethite using a strict charge-neutral ion-exchange theory, PLoS One, 12(2017), No. 5, art. No. e0176743. doi: 10.1371/journal.pone.0176743
|
[58] |
A. Ler and R. Stanforth, Evidence for surface precipitation of phosphate on goethite, Environ. Sci. Technol., 37(2003), No. 12, p. 2694. doi: 10.1021/es020773i
|
[59] |
K.J. Wang and B.S. Xing, Adsorption and desorption of cadmium by goethite pretreated with phosphate, Chemosphere, 48(2002), No. 7, p. 665. doi: 10.1016/S0045-6535(02)00167-4
|
[60] |
U. Koch and P.L.A. Popelier, Characterization of C–H–O hydrogen bonds on the basis of the charge density, J. Phys. Chem., 99(1995), No. 24, p. 9747. doi: 10.1021/j100024a016
|
[61] |
S. Jenkins and I. Morrison, The chemical character of the intermolecular bonds of seven phases of ice as revealed by ab initio calculation of electron densities, Chem. Phys. Lett., 317(2000), No. 1-2, p. 97. doi: 10.1016/S0009-2614(99)01306-8
|
[62] |
S. Emamian, T. Lu, H. Kruse, and H. Emamian, Exploring nature and predicting strength of hydrogen bonds: A correlation analysis between atoms-in-molecules descriptors, binding energies, and energy components of symmetry-adapted perturbation theory, J. Comput. Chem., 40(2019), No. 32, p. 2868. doi: 10.1002/jcc.26068
|