Kaizong Xia, Zhiwei Si, Congxin Chen, Xiaoshuang Li, Junpeng Zou,  and Jiahao Yuan, Numerical and theoretical study of large-scale failure of strata overlying sublevel caving mines with steeply dipping discontinuities, Int. J. Miner. Metall. Mater., 31(2024), No. 8, pp. 1799-1815. https://doi.org/10.1007/s12613-024-2838-3
Cite this article as:
Kaizong Xia, Zhiwei Si, Congxin Chen, Xiaoshuang Li, Junpeng Zou,  and Jiahao Yuan, Numerical and theoretical study of large-scale failure of strata overlying sublevel caving mines with steeply dipping discontinuities, Int. J. Miner. Metall. Mater., 31(2024), No. 8, pp. 1799-1815. https://doi.org/10.1007/s12613-024-2838-3
Research Article

Numerical and theoretical study of large-scale failure of strata overlying sublevel caving mines with steeply dipping discontinuities

+ Author Affiliations
  • Corresponding author:

    Kaizong Xia    E-mail: kzxia@whrsm.ac.cn

  • Received: 29 November 2023Revised: 22 January 2024Accepted: 4 February 2024Available online: 19 January 2024
  • The deformation and fracture evolution mechanisms of the strata overlying mines mined using sublevel caving were studied via numerical simulations. Moreover, an expression for the normal force acting on the side face of a steeply dipping superimposed cantilever beam in the surrounding rock was deduced based on limit equilibrium theory. The results show the following: (1) surface displacement above metal mines with steeply dipping discontinuities shows significant step characteristics, and (2) the behavior of the strata as they fail exhibits superimposition characteristics. Generally, failure first occurs in certain superimposed strata slightly far from the goaf. Subsequently, with the constant downward excavation of the orebody, the superimposed strata become damaged both upwards away from and downwards toward the goaf. This process continues until the deep part of the steeply dipping superimposed strata forms a large-scale deep fracture plane that connects with the goaf. The deep fracture plane generally makes an angle of 12°–20° with the normal to the steeply dipping discontinuities. The effect of the constant outward transfer of strata movement due to the constant outward failure of the superimposed strata in the metal mines with steeply dipping discontinuities causes the scope of the strata movement in these mines to be larger than expected. The strata in the metal mines with steeply dipping discontinuities mainly show flexural toppling failure. However, the steeply dipping structural strata near the goaf mainly exhibit shear slipping failure, in which case the mechanical model used to describe them can be simplified by treating them as steeply dipping superimposed cantilever beams. By taking the steeply dipping superimposed cantilever beam that first experiences failure as the key stratum, the failure scope of the strata (and criteria for the stability of metal mines with steeply dipping discontinuities mined using sublevel caving) can be obtained via iterative computations from the key stratum, moving downward toward and upwards away from the goaf.
  • loading
  • [1]
    J. Chen, K.W. Shi, Y.Y. Pu, et al., Study on instability fracture and simulation of surrounding rock induced by fault activation under mining influence, Rock Mech. Bull., 2(2023), No. 2, art. No. 100037. doi: 10.1016/j.rockmb.2023.100037
    [2]
    J. Han, Z.Q. Bi, B. Liang, C. Cao, and S.W. Ma, Anchorage performance of large-diameter FRP bolts and their application in large deformation roadway, Int. J. Min. Sci. Technol., 33(2023), No. 8, p. 1037. doi: 10.1016/j.ijmst.2022.09.028
    [3]
    H.P. Kang, F.Q. Gao, G. Xu, and H.W. Ren, Mechanical behaviors of coal measures and ground control technologies for China’s deep coal mines–A review, J. Rock Mech. Geotech. Eng., 15(2023), No. 1, p. 37. doi: 10.1016/j.jrmge.2022.11.004
    [4]
    K.M. Li, K.Y. Jiang, Y.H. Li, X. Wang, K. Liu, and S. Xu, Determination of the load bearing capacity of pre-stressed expandable props for ground support in underground mines, Int. J. Min. Sci. Technol., 33(2023), No. 8, p. 977. doi: 10.1016/j.ijmst.2023.05.003
    [5]
    C.Q. Li, J. Zhou, K. Du, and D. Dias, Stability prediction of hard rock pillar using support vector machine optimized by three metaheuristic algorithms, Int. J. Min. Sci. Technol., 33(2023), No. 8, p. 1019. doi: 10.1016/j.ijmst.2023.06.001
    [6]
    S. Ram, P. Waclawik, J. Nemcik, et al., Mechanical behaviors of deep pillar sandwiched between strong and weak layers, J. Rock Mech. Geotech. Eng., 15(2023), No. 5, p. 1111. doi: 10.1016/j.jrmge.2022.11.006
    [7]
    Y. Wang, Z.Q. Wang, A.X. Wu, et al., Experimental research and numerical simulation of the multi-field performance of cemented paste backfill: Review and future perspectives, Int. J. Miner. Metall. Mater., 30(2023), No. 2, p. 193. doi: 10.1007/s12613-022-2537-x
    [8]
    K.Z. Xia, C.X. Chen, X.M. Liu, Y. Zheng, and H. Fu, Ground movement mechanism in tectonic stress metal mines with steep structure planes, J. Cent. South Univ., 24(2017), No. 9, p. 2092. doi: 10.1007/s11771-017-3618-2
    [9]
    K.Z. Xia, X.M. Liu, C.X. Chen, Y. Zheng, Z.D. Lu, and Y.Y. Deng, Time-dependent ground movement behavior in a metal mine, Int. J. Geomech., 19(2019), No. 8, art. No. 04019095. doi: 10.1061/(ASCE)GM.1943-5622.0001479
    [10]
    K.Z. Xia, C.X. Chen, Z.D. Lu, et al., Investigation of the ground movement due to underground mining at the Jinshandian Iron Mine in China, Environ. Earth Sci., 78(2019), No. 24, art. No. 715. doi: 10.1007/s12665-019-8753-7
    [11]
    G.L. Xue, E. Yilmaz, and Y.D. Wang, Progress and prospects of mining with backfill in metal mines in China, Int. J. Miner. Metall. Mater., 30(2023), No. 8, p. 1455. doi: 10.1007/s12613-023-2663-0
    [12]
    M. Svartsjaern, A prognosis methodology for underground infrastructure damage in sublevel cave mining, Rock Mech. Rock Eng., 52(2019), No. 1, p. 247. doi: 10.1007/s00603-018-1464-7
    [13]
    M. Svartsjaern, D. Saiang, E. Nordlund, and A. Eitzenberger, Conceptual numerical modeling of large-scale footwall behavior at the Kiirunavaara mine, and implications for deformation monitoring, Rock Mech. Rock Eng., 49(2016), No. 3, p. 943. doi: 10.1007/s00603-015-0750-x
    [14]
    G.W. Cheng, C.X. Chen, L.C. Li, et al., Numerical modelling of strata movement at footwall induced by underground mining, Int. J. Rock Mech. Min. Sci., 108(2018), p. 142. doi: 10.1016/j.ijrmms.2018.06.013
    [15]
    G.W. Cheng, C.X. Chen, T.H. Ma, H.Y. Liu, and C.N. Tang, A case study on the strata movement mechanism and surface deformation regulation in Chengchao underground iron mine, Rock Mech. Rock Eng., 50(2017), No. 4, p. 1011. doi: 10.1007/s00603-016-1132-8
    [16]
    K.Z. Xia, C.X. Chen, T.L. Wang, K.Y. Yang, and C.Q. Zhang, Investigation of mining-induced fault reactivation associated with sublevel caving in metal mines, Rock Mech. Rock Eng., 55(2022), No. 10, p. 5953. doi: 10.1007/s00603-022-02959-9
    [17]
    K.Z. Xia, C.X. Chen, T.L. Wang, Y. Zheng, and Y. Wang, Estimating the geological strength index and disturbance factor in the Hoek–Brown criterion using the acoustic wave velocity in the rock mass, Eng. Geol., 306(2022), art. No. 106745. doi: 10.1016/j.enggeo.2022.106745
    [18]
    K.Z. Xia, C.X. Chen, H. Fu, Y.C. Pan, and Y.Y. Deng, Mining-induced ground deformation in tectonic stress metal mines: A case study, Eng. Geol., 210(2016), p. 212. doi: 10.1016/j.enggeo.2016.06.018
    [19]
    P. Hamdi, D. Stead, D. Elmo, and J. Töyrä, Use of an integrated finite/discrete element method-discrete fracture network approach to characterize surface subsidence associated with sub-level caving, Int. J. Rock Mech. Min. Sci., 103(2018), p. 55. doi: 10.1016/j.ijrmms.2018.01.021
    [20]
    W.Z. Ren, C.M. Guo, Z.Q. Peng, and Y.G. Wang, Model experimental research on deformation and subsidence characteristics of ground and wall rock due to mining under thick overlying terrane, Int. J. Rock Mech. Min. Sci., 47(2010), No. 4, p. 614. doi: 10.1016/j.ijrmms.2009.12.012
    [21]
    W.X. Li, L. Wen, and X.M. Liu, Ground movements caused by deep underground mining in Guan-Zhuang iron mine, Luzhong, China, Int. J. Appl. Earth Obs. Geoinf., 12(2010), No. 3, p. 175.
    [22]
    B.H.G. Brady and E.T. Brown, Rock Mechanics for Underground Mining, Springer Science & Business Media, Berlin, 2006, p. 467.
    [23]
    Y. Abolfazlzadeh and M. Hudyma, Identifying and describing a seismogenic zone in a sublevel caving mine, Rock Mech. Rock Eng., 49(2016), No. 9, p. 3735. doi: 10.1007/s00603-016-1017-x
    [24]
    K. Ding, F.S. Ma, J. Guo, H.J. Zhao, R. Lu, and F. Liu, Investigation of the mechanism of roof caving in the Jinchuan Nickel Mine, China, Rock Mech. Rock Eng., 51(2018), No. 4, p. 1215. doi: 10.1007/s00603-017-1374-0
    [25]
    A.L. Pinheiro, M.S. Lana, and F.G. Sobreira, Use of the distinct element method to study flexural toppling at the Pico Mine, Brazil, Bull. Eng. Geol. Environ., 74(2015), No. 4, p. 1177. doi: 10.1007/s10064-014-0713-6
    [26]
    X.T. Liu, C.X. Chen, X.M. Liu, K.Z. Xia, and T.L. Wang, Investigation of the deformation failure occurring when extracting minerals via underground mining: A case study, Minerals, 12(2022), No. 8, art. No. 1025. doi: 10.3390/min12081025
    [27]
    F.Q. Gao, D. Stead, and H.P. Kang, Simulation of roof shear failure in coal mine roadways using an innovative UDEC Trigon approach, Comput. Geotech., 61(2014), p. 33. doi: 10.1016/j.compgeo.2014.04.009
    [28]
    C.Y. Sun, C.X. Chen, Y. Zheng, W. Zhang, and F. Liu, Numerical and theoretical study of bi-planar failure in footwall slopes, Eng. Geol., 260(2019), art. No. 105234. doi: 10.1016/j.enggeo.2019.105234
    [29]
    E. Hoek, C.T. Carranza-Torres, and B. Corkum, Hoek–Brown Failure Criterion, [in] Proc. NARMS-TAC Conference, Toronto, 2002, p. 267.
    [30]
    E. Hoek and E.T. Brown, The Hoek–Brown failure criterion and GSI–2018 edition, J. Rock Mech. Geotech. Eng., 11(2019), No. 3, p. 445. doi: 10.1016/j.jrmge.2018.08.001
    [31]
    K.Z. Xia, C.X. Chen, X.T. Liu, X.M. Liu, J.H. Yuan, and S. Dang, Assessing the stability of high-level pillars in deeply-buried metal mines stabilized using cemented backfill, Int. J. Rock Mech. Min. Sci., 170(2023), art. No. 105489. doi: 10.1016/j.ijrmms.2023.105489
    [32]
    J.H. Zhong and X.L. Yang, Two-dimensional face stability analysis in rock masses governed by the Hoek–Brown strength criterion with a new multi-horn mechanism, Int. J. Min. Sci. Technol., 33(2023), No. 8, p. 963. doi: 10.1016/j.ijmst.2023.05.002
    [33]
    Y.X. Yuan, N. Zhang, C.L. Han, and D.X. Liang, Automated identification of fissure trace in mining roadway via deep learning, J. Rock Mech. Geotech. Eng., 15(2023), No. 8, p. 2039. doi: 10.1016/j.jrmge.2022.12.018
    [34]
    S.Q. Yang, W.L. Tian, P.G. Ranjith, X.R. Liu, M. Chen, and W. Cai, Three-dimensional failure behavior and cracking mechanism of rectangular solid sandstone containing a single fissure under triaxial compression, Rock Mech. Bull., 1(2022), No. 1, art. No. 100008. doi: 10.1016/j.rockmb.2022.100008
    [35]
    F.Q. Wu, J. Wu, H. Bao, et al., Rapid intelligent evaluation method and technology for determining engineering rock mass quality, Rock Mech. Bull., 2(2023), No. 2, art. No. 100038. doi: 10.1016/j.rockmb.2023.100038
    [36]
    K.Z. Xia, C.X. Chen, X.M. Liu, Y. Wang, X.T. Liu, and J.H. Yuan, Estimating shear strength of high-level pillars supported with cemented backfilling using the Hoek–Brown strength criterion, J. Rock Mech. Geotech. Eng., 16(2024), No. 2, p. 454. doi: 10.1016/j.jrmge.2023.06.004
    [37]
    D.P. Adhikary, A.V. Dyskin, R.J. Jewell, and D.P. Stewart, A study of the mechanism of flexural toppling failure of rock slopes, Rock Mech. Rock Eng., 30(1997), No. 2, p. 75. doi: 10.1007/BF01020126
    [38]
    H.S. Pang, C.X. Chen, K.Z. Xia, Y.Y. Deng, C.Q. Zhang, and C.Y. Sun, A methodology based on strain analysis for identifying potential discontinuous deformation zones in sublevel caving mines, Eng. Geol., 279(2020), art. No. 105872. doi: 10.1016/j.enggeo.2020.105872
    [39]
    T. Villegas, E. Nordlund, and C. Dahnér-Lindqvist, Hangingwall surface subsidence at the Kiirunavaara Mine, Sweden, Eng. Geol., 121(2011), No. 1-2, p. 18. doi: 10.1016/j.enggeo.2011.04.010
    [40]
    X.G. Dai and D.S. Gu, Theoretical analysis and calculation of lateral pressure coefficient in granular materials, Nonferrous Met., (1992), No. 3, p. 19.
    [41]
    Ö. Aydan and T. Kawamoto, The stability of slopes and underground openings against flexural toppling and their stabilisation, Rock Mech. Rock Eng., 25(1992), No. 3, p. 143. doi: 10.1007/BF01019709
    [42]
    Y. Zheng, Study on the Analytical Approach of Rock Layered Counter-tilt Slope Flexural Toppling Failure [Dissertation], Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, 2015, p. 55.
    [43]
    H.N. Zhang, Study on the Failure Mechanism of Block-flexure Toppling of Rock Slope [Dissertation], Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, 2020, p. 71.
    [44]
    Y. Zheng, R.Q. Wang, C.X. Chen, and F. Meng, Fast stability assessment of rock slopes subjected to flexural toppling failure using adaptive moment estimation (Adam) algorithm, Landslides, 19(2022), No. 9, p. 2149. doi: 10.1007/s10346-022-01902-x
    [45]
    M. Amini, A. Majdi, and M.A. Veshadi, Stability analysis of rock slopes against block-flexure toppling failure, Rock Mech. Rock Eng., 45(2012), No. 4, p. 519. doi: 10.1007/s00603-012-0220-7
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Share Article

    Article Metrics

    Article Views(289) PDF Downloads(20) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return