Yulin Gao, Min Zhang, Rui Wang, Xinxin Zhang, Zhunli Tan,  and Xiaoyu Chong, Effect of temperature and time on the precipitation of κ-carbides in Fe–28Mn–10Al–0.8C low-density steels: Aging mechanism and its impact on material properties, Int. J. Miner. Metall. Mater., 31(2024), No. 10, pp. 2189-2198. https://doi.org/10.1007/s12613-024-2857-0
Cite this article as:
Yulin Gao, Min Zhang, Rui Wang, Xinxin Zhang, Zhunli Tan,  and Xiaoyu Chong, Effect of temperature and time on the precipitation of κ-carbides in Fe–28Mn–10Al–0.8C low-density steels: Aging mechanism and its impact on material properties, Int. J. Miner. Metall. Mater., 31(2024), No. 10, pp. 2189-2198. https://doi.org/10.1007/s12613-024-2857-0
Research Article

Effect of temperature and time on the precipitation of κ-carbides in Fe–28Mn–10Al–0.8C low-density steels: Aging mechanism and its impact on material properties

+ Author Affiliations
  • Corresponding author:

    Min Zhang    E-mail: zhangm@bjtu.edu.cn

  • Received: 20 December 2023Revised: 22 January 2024Accepted: 22 February 2024Available online: 23 February 2024
  • In low-density steel, κ-carbides primarily precipitate in the form of nanoscale particles within austenite grains. However, their precipitation within ferrite matrix grains has not been comprehensively explored, and the second-phase evolution mechanism during aging remains unclear. In this study, the crystallographic characteristics and morphological evolution of κ-carbides in Fe–28Mn–10Al–0.8C (wt%) low-density steel at different aging temperatures and times and the impacts of these changes on the steels’ microhardness and properties were comprehensively analyzed. Under different heat treatment conditions, intragranular κ-carbides exhibited various morphological and crystallographic characteristics, such as acicular, spherical, and short rod-like shapes. At the initial stage of aging, acicular κ-carbides primarily precipitated, accompanied by a few spherical carbides. κ-Carbides grew and coarsened with aging time, the spherical carbides were considerably reduced, and rod-like carbides coarsened. Vickers hardness testing demonstrated that the material’s hardness was affected by the volume fraction, morphology, and size of κ-carbides. Extended aging at higher temperatures led to an increase in carbide size and volume fraction, resulting in a gradual rise in hardness. During deformation, the primary mechanisms for strengthening were dislocation strengthening and second-phase strengthening. Based on these findings, potential strategies for improving material strength are proposed.
  • loading
  • [1]
    H.T. Lu, D.Z. Li, S.Y. Li, and Y.A. Chen, Hot deformation behavior of Fe–27.34Mn–8.63Al–1.03C lightweight steel, Int. J. Miner. Metall. Mater., 30(2023), No. 4, p. 734. doi: 10.1007/s12613-022-2531-3
    [2]
    L.Z. Xie, Z.G. Xu, Y.Z. Qi, J.R. Liang, P. He, Q. Shen, and C.B. Wang, Effect of ball milling time on the microstructure and compressive properties of the Fe–Mn–Al porous steel, Int. J. Miner. Metall. Mater., 30(2023), No. 5, p. 917. doi: 10.1007/s12613-022-2568-3
    [3]
    Z.Y. Huang, A.L. Hou, Y.S. Jiang, et al., Rietveld refinement, microstructure, mechanical properties and oxidation characteristics of Fe–28Mn–xAl–1C (x = 10 and 12 wt. %) low-density steels, J. Iron Steel Res. Int., 24(2017), No. 12, p. 1190. doi: 10.1016/S1006-706X(18)30017-7
    [4]
    L.L. Wei, G.H. Gao, J. Kim, R.D.K. Misra, C.G. Yang, and X.J. Jin, Ultrahigh strength-high ductility 1GPa low density austenitic steel with ordered precipitation strengthening phase and dynamic slip band refinement, Mater. Sci. Eng. A, 838(2022), art. No. 142829. doi: 10.1016/j.msea.2022.142829
    [5]
    D.G. Liu, H. Ding, D. Han, and M.H. Cai, Effect of grain interior and grain boundary κ-carbides on the strain hardening behavior of medium-Mn lightweight steels, Mater. Sci. Eng. A, 871(2023), art. No. 144861. doi: 10.1016/j.msea.2023.144861
    [6]
    P. Ren, X.P. Chen, L. Mei, Y.Y. Nie, W.Q. Cao, and Q. Liu, Intragranular brittle precipitates improve strain hardening capability of Fe–30Mn–11Al–1.2C low-density steel, Mater. Sci. Eng. A, 775(2020), art. No. 138984. doi: 10.1016/j.msea.2020.138984
    [7]
    S.P. Chen, R. Rana, A. Haldar, and R.K. Ray, Current state of Fe–Mn–Al–C low density steels, Prog. Mater. Sci., 89(2017), p. 345. doi: 10.1016/j.pmatsci.2017.05.002
    [8]
    Y. Zhang, Z.Z. Zhang, N.V. Medhekar, and L. Bourgeois, Vacancy-tuned precipitation pathways in Al–1.7Cu–0.025In–0.025Sb (at.%) alloy, Acta Mater., 141(2017), p. 341. doi: 10.1016/j.actamat.2017.09.025
    [9]
    J.E. Jin and Y.K. Lee, Effects of Al on microstructure and tensile properties of C-bearing high Mn TWIP steel, Acta Mater., 60(2012), No. 4, p. 1680. doi: 10.1016/j.actamat.2011.12.004
    [10]
    K.T. Park, K.G. Jin, S.H. Han, S.W. Hwang, K. Choi, and C.S. Lee, Stacking fault energy and plastic deformation of fully austenitic high manganese steels: Effect of Al addition, Mater. Sci. Eng. A, 527(2010), No. 16-17, p. 3651. doi: 10.1016/j.msea.2010.02.058
    [11]
    J.S. Jeong, W. Woo, K.H. Oh, S.K. Kwon, and Y.M. Koo, In situ neutron diffraction study of the microstructure and tensile deformation behavior in Al-added high manganese austenitic steels, Acta Mater., 60(2012), No. 5, p. 2290. doi: 10.1016/j.actamat.2011.12.043
    [12]
    M.J. Yao, E. Welsch, D. Ponge, et al., Strengthening and strain hardening mechanisms in a precipitation-hardened high-Mn lightweight steel, Acta Mater., 140(2017), p. 258. doi: 10.1016/j.actamat.2017.08.049
    [13]
    A. Banis, A. Gomez, A. Dutta, I. Sabirov, and R.H. Petrov, The effect of nano-sized κ-carbides on the mechanical properties of an Fe–Mn–Al–C alloy, Mater. Charact., 205(2023), art. No. 113364. doi: 10.1016/j.matchar.2023.113364
    [14]
    P. Chen, Q.C. Zhang, F. Zhang, J.H. Du, F. Shi, and X.W. Li, Critical role of κ-carbides in the multi-stage work hardening process of a lightweight austenitic steel, Mater. Charact., 200(2023), art. No. 112853. doi: 10.1016/j.matchar.2023.112853
    [15]
    P. Dey, R. Nazarov, B. Dutta, et al. , Ab initio explanation of disorder and off-stoichiometry in Fe–Mn–Al–C κ carbides, Phys. Rev. B, 95(2017), No. 10, art. No. 104108. doi: 10.1103/PhysRevB.95.104108
    [16]
    C. Kim, H.U. Hong, J.H. Jang, et al., Reverse partitioning of Al from κ-carbide to the γ-matrix upon Ni addition and its strengthening effect in Fe–Mn–Al–C lightweight steel, Mater. Sci. Eng. A, 820(2021), art. No. 141563. doi: 10.1016/j.msea.2021.141563
    [17]
    K. Choi, C.H. Seo, H. Lee, et al., Effect of aging on the microstructure and deformation behavior of austenite base lightweight Fe–28Mn–9Al–0.8C steel, Scr. Mater., 63(2010), No. 10, p. 1028. doi: 10.1016/j.scriptamat.2010.07.036
    [18]
    J. Wang, M.X. Yang, X.L. Wu, and F.P. Yuan, Achieving better synergy of strength and ductility by adjusting size and volume fraction of coherent κ’–carbides in a lightweight steel, Mater. Sci. Eng. A, 857(2022), art. No. 144085. doi: 10.1016/j.msea.2022.144085
    [19]
    I. Gutierrez-Urrutia and D. Raabe, Influence of Al content and precipitation state on the mechanical behavior of austenitic high-Mn low-density steels, Scripta Mater., 68(2013), No. 6, p. 343. doi: 10.1016/j.scriptamat.2012.08.038
    [20]
    C.L. Lin, C.G. Chao, H.Y. Bor, and T.F. Liu, Relationship between microstructures and tensile properties of an Fe–30Mn–8.5Al–2.0C alloy, Mater. Trans., 51(2010), No. 6, p. 1084. doi: 10.2320/matertrans.M2010013
    [21]
    J.L. Zhang, D. Raabe, and C.C. Tasan, Designing duplex, ultrafine-grained Fe–Mn–Al–C steels by tuning phase transformation and recrystallization kinetics, Acta Mater., 141(2017), . 374. doi: 10.1016/j.actamat.2017.09.026
    [22]
    H. Wang, C.Y. Wang, J.X. Liang, et al., Effect of alloying content on microstructure and mechanical properties of Fe–Mn–Al–C low-density steels, Mater. Sci. Eng. A, 886(2023), art. No. 145675. doi: 10.1016/j.msea.2023.145675
    [23]
    S.W. Park, J.Y. Park, K.M. Cho, et al., Effect of Mn and C on age hardening of Fe–Mn–Al–C lightweight steels, Met. Mater. Int., 25(2019), No. 3, p. 683. doi: 10.1007/s12540-018-00230-x
    [24]
    C.Y. Chao, C.N. Hwang, and T.F. Liu, Grain boundary precipitation in an Fe–7.8Al–31.7Mn–0.54C alloy, Scripta Metall. Mater., 28(1993), No. 1, p. 109. doi: 10.1016/0956-716X(93)90546-5
    [25]
    C.Y. Chao, C.N. Hwang, and T.F. Liu, Grain boundary precipitation behaviors in an Fe–9.8Al–28.6Mn–0.8Si–1.0C alloy, Scripta Mater., 34(1996), No. 1, p. 75. doi: 10.1016/1359-6462(95)00485-8
    [26]
    M.C. Li, H. Chang, P.W. Kao, and D. Gan, The effect of Mn and Al contents on the solvus of κ phase in austenitic Fe–Mn–Al–C alloys, Mater. Chem. Phys., 59(1999), No. 1, . 96. doi: 10.1016/S0254-0584(99)00026-7
    [27]
    Y.F. Feng, R.B. Song, Z.Z. Pei, R.F. Song, and G.Y. Dou, Effect of aging isothermal time on the microstructure and room-temperature impact toughness of Fe–24.8Mn–7.3Al–1.2C austenitic steel with κ-carbides precipitation, Met. Mater. Int., 24(2018), No. 5, p. 1012. doi: 10.1007/s12540-018-0112-9
    [28]
    T.H. Zhang, H.Y. Wei, K. Zhang, et al., Effect of cooling medium on the κ carbide precipitation behavior, microstructure and impact properties of FeMnAlC low-density steel, Mater. Today Commun., 37(2023), art. No. 107084. doi: 10.1016/j.mtcomm.2023.107084
    [29]
    L. Xiao, Y.J. Zhou, C.H. Zhang, Y.Y. Wang, X.T. Deng, and Z.D. Wang, Improving impact toughness of Fe–20Mn–9Al–1.5C–2Ni–3Cr low-density steel by optimizing grain boundaries via multi-stage heat treatment without compromising high strength and ductility, J. Mater. Res. Technol., 29(2024), p. 2396. doi: 10.1016/j.jmrt.2024.01.272
    [30]
    J. Jeong, C.Y. Lee, I.J. Park, and Y.K. Lee, Isothermal precipitation behavior of κ-carbide in the Fe–9Mn–6Al–0.15C lightweight steel with a multiphase microstructure, J. Alloys Compd., 574(2013), p. 299. doi: 10.1016/j.jallcom.2013.05.138
    [31]
    W.C. Cheng, Phase transformations of an Fe–0.85 C–17.9 Mn–7.1 Al austenitic steel after quenching and annealing, JOM, 66(2014), No. 9, p. 1809. doi: 10.1007/s11837-014-1088-7
    [32]
    Y.F. An, X.P. Chen, P. Ren, and W.Q. Cao, Ultrastrong and ductile austenitic lightweight steel via ultra-fine grains and heterogeneous B2 precipitates, Mater. Sci. Eng. A, 860(2022), art. No. 144330. doi: 10.1016/j.msea.2022.144330
    [33]
    O.A. Zambrano, J. Valdés, L.A. Rodriguez, et al., Elucidating the role of κ-carbides in Fe–Mn–Al–C alloys on abrasion wear, Tribol. Int., 135(2019), p. 421. doi: 10.1016/j.triboint.2019.03.002
    [34]
    J.L. Zhang, Y.S. Jiang, W.S. Zheng, et al., Revisiting the formation mechanism of intragranular κ-carbide in austenite of a Fe–Mn–Al–Cr–C low-density steel, Scripta Mater., 199(2021), art. No. 113836. doi: 10.1016/j.scriptamat.2021.113836
    [35]
    N. Kamikawa, K. Sato, G. Miyamoto, et al., Stress–strain behavior of ferrite and bainite with nano-precipitation in low carbon steels, Acta Mater., 83(2015), p. 383. doi: 10.1016/j.actamat.2014.10.010
    [36]
    E. Welsch, D. Ponge, S.M. Hafez Haghighat, et al., Strain hardening by dynamic slip band refinement in a high-Mn lightweight steel, Acta Mater., 116(2016), p. 188. doi: 10.1016/j.actamat.2016.06.037
    [37]
    D. Canadinc, H. Sehitoglu, and H.J. Maier, The role of dense dislocation walls on the deformation response of aluminum alloyed Hadfield steel polycrystals, Mater. Sci. Eng. A, 454-455(2007), p. 662. doi: 10.1016/j.msea.2006.11.122
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Share Article

    Article Metrics

    Article Views(300) PDF Downloads(26) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return