Zhihao Zheng, Mingzhuang Xie, Guoqing Yu, Zegang Wu, Jingjing Zhong, Yi Wang, Hongliang Zhao,  and Fengqin Liu, Preparation of lithium-ion battery anode materials from graphitized spent carbon cathode derived from aluminum electrolysis, Int. J. Miner. Metall. Mater., 31(2024), No. 11, pp. 2466-2475. https://doi.org/10.1007/s12613-024-2866-z
Cite this article as:
Zhihao Zheng, Mingzhuang Xie, Guoqing Yu, Zegang Wu, Jingjing Zhong, Yi Wang, Hongliang Zhao,  and Fengqin Liu, Preparation of lithium-ion battery anode materials from graphitized spent carbon cathode derived from aluminum electrolysis, Int. J. Miner. Metall. Mater., 31(2024), No. 11, pp. 2466-2475. https://doi.org/10.1007/s12613-024-2866-z
Research Article

Preparation of lithium-ion battery anode materials from graphitized spent carbon cathode derived from aluminum electrolysis

+ Author Affiliations
  • Corresponding authors:

    Hongliang Zhao    E-mail: zhaohl@ustb.edu.cn

    Fengqin Liu    E-mail: liufq@ustb.edu.cn

  • Received: 13 November 2023Revised: 20 February 2024Accepted: 26 February 2024Available online: 27 February 2024
  • Graphitized spent carbon cathode (SCC) is a hazardous solid waste generated in the aluminum electrolysis process. In this study, a flotation–acid leaching process is proposed for the purification of graphitized SCC, and the use of the purified SCC as an anode material for lithium-ion batteries is explored. The flotation and acid leaching processes were separately optimized through one-way experiments. The maximum SCC carbon content (93wt%) was achieved at a 90% proportion of −200-mesh flotation particle size, a slurry concentration of 10wt%, a rotation speed of 1600 r/min, and an inflatable capacity of 0.2 m3/h (referred to as FSCC). In the subsequent acid leaching process, the SCC carbon content reached 99.58wt% at a leaching concentration of 5 mol/L, a leaching time of 100 min, a leaching temperature of 85°C, and an HCl/FSCC volume ratio of 5:1. The purified graphitized SCC (referred to as FSCC-CL) was utilized as an anode material, and it exhibited an initial capacity of 348.2 mAh/g at 0.1 C and a reversible capacity of 347.8 mAh/g after 100 cycles. Moreover, compared with commercial graphite, FSCC-CL exhibited better reversibility and cycle stability. Thus, purified SCC is an important candidate for anode material, and the flotation–acid leaching purification method is suitable for the resourceful recycling of SCC.
  • loading
  • [1]
    J. Yuan, J. Xiao, F.C. Li, et al., Co-treatment of spent cathode carbon in caustic and acid leaching process under ultrasonic assisted for preparation of SiC, Ultrason. Sonochem., 41(2018), p. 608. doi: 10.1016/j.ultsonch.2017.10.027
    [2]
    K. Yang, J. Li, W.L. Huang, et al., A closed-circuit cycle process for recovery of carbon and valuable components from spent carbon cathode by hydrothermal acid-leaching method, J. Environ. Manage., 318(2022), art. No. 115503. doi: 10.1016/j.jenvman.2022.115503
    [3]
    M.Z. Xie, R.B. Li, H.L. Zhao, W. Liu, T.T. Lu, and F.Q. Liu, Detoxification of spent cathode carbon blocks from aluminum smelters by joint controlling temperature-vacuum process, J. Cleaner Prod., 249(2020), art. No. 119370. doi: 10.1016/j.jclepro.2019.119370
    [4]
    K. Yang, J. Li, C.P. Zhu, et al., Separation and recovery of valuable elements from acid leachate of spent carbon cathode by fractional precipitation method, J. Environ. Chem. Eng., 11(2023), No. 3, art. No. 110288. doi: 10.1016/j.jece.2023.110288
    [5]
    Z. Zhu, L. Xu, Z.H. Han, et al., Optimization of response surface methodology (RSM) for defluorination of spent carbon cathode (SCC) in fire-roasting aluminum electrolysis, Miner. Eng., 182(2022), art. No. 107565. doi: 10.1016/j.mineng.2022.107565
    [6]
    Z. Yao, Q.F. Zhong, J. Xiao, S.C. Ye, L. Tang, and Z.H. Zhang, An environmental-friendly process for dissociating toxic substances and recovering valuable components from spent carbon cathode, J. Hazard. Mater., 404(2021), art. No. 124120. doi: 10.1016/j.jhazmat.2020.124120
    [7]
    H.Y. Ren, C.L. Zhang, Q. Chang, H.M. Cheng, D.R. Li, and D.D. Zhang, Optimization of flotation conditions for spent pot lining carbon of aluminum reduction, Light Met., (2017), No. 9, p. 26.
    [8]
    Z.N. Shi, W. Li, X.W. Hu, B.J. Ren, B.L. Gao, and Z.W. Wang, Recovery of carbon and cryolite from spent pot lining of aluminium reduction cells by chemical leaching, Trans. Nonferrous Met. Soc. China, 22(2012), No. 1, p. 222. doi: 10.1016/S1003-6326(11)61164-3
    [9]
    J. Xiao, J. Yuan, Z.L. Tian, et al., Comparison of ultrasound-assisted and traditional caustic leaching of spent cathode carbon (SCC) from aluminum electrolysis, Ultrason. Sonochem., 40(2018), p. 21. doi: 10.1016/j.ultsonch.2017.06.024
    [10]
    B. Babu, P. Simon, and A. Balducci, Fast charging materials for high power applications, Adv. Energy Mater., 10(2020), No. 29, art. No. 2001128. doi: 10.1002/aenm.202001128
    [11]
    G.Q. Yu, M.Z. Xie, Z.H. Zheng, Z.G. Wu, H.L. Zhao, and F.Q. Liu, Efficiently regenerating spent lithium battery graphite anode materials through heat treatment processes for impurity dissipation and crystal structure repair, Resour. Conserv. Recycl., 199(2023), art. No. 107267. doi: 10.1016/j.resconrec.2023.107267
    [12]
    K. Yang, Z.J. Zhao, X. Xin, Z.L. Tian, K. Peng, and Y.Q. Lai, Graphitic carbon materials extracted from spent carbon cathode of aluminium reduction cell as anodes for lithium ion batteries: Converting the hazardous wastes into value-added materials, J. Taiwan Inst. Chem. Eng., 104(2019), p. 201. doi: 10.1016/j.jtice.2019.09.012
    [13]
    K. Yang, P.Y. Gong, Z.L. Tian, Y.Q. Lai, and J. Li, Recycling spent carbon cathode by a roasting method and its application in Li-ion batteries anodes, J. Cleaner Prod., 261(2020), art. No. 121090. doi: 10.1016/j.jclepro.2020.121090
    [14]
    K. Yang, P.Y. Gong, Z.L. Tian, K. Peng, and Y.Q. Lai, Carbon recovered from spent carbon cathode of aluminum reduction cell towards its valorisation as negative electrodes for lithium ion batteries, Diam. Relat. Mater., 109(2020), art. No. 108062. doi: 10.1016/j.diamond.2020.108062
    [15]
    K.Y. Shi, J. Wang, S.W. Wang, Z.M. Yu, P. Chen, and S. Li, Improving the flotation performance of coking coal using the reverse-direct flotation process, Energy Sources Part A, 40(2018), No. 23, p. 2886. doi: 10.1080/15567036.2018.1512686
    [16]
    Ö. Öney, Optimization of operating parameters of graphite flotation circuit using box-behnken design, Indian J. Chem. Technol., 25(2018), No. 2, p. 170.
    [17]
    F. Teng, T. Qu, and Y.N. Dai, Research of effect of alkali leaching factors on graphite purification through high pressure alkali leaching–atmospheric pressure acid leaching, J. Kunming Univ. Sci. Technol. Nat. Sci. Ed., 41(2016), No. 1, p. 14.
    [18]
    B.L. Xing, C.T. Zhang, Y.J. Cao, et al., Preparation of synthetic graphite from bituminous coal as anode materials for high performance lithium-ion batteries, Fuel Process. Technol., 172(2018), p. 162. doi: 10.1016/j.fuproc.2017.12.018
    [19]
    G.X. Wang, X.P. Shen, B. Wang, J. Yao, and J. Park, Synthesis and characterisation of hydrophilic and organophilic graphene nanosheets, Carbon, 47(2009), No. 5, p. 1359. doi: 10.1016/j.carbon.2009.01.027
    [20]
    Z.W. Yang, H.J. Guo, X.H. Li, et al., Graphitic carbon balanced between high plateau capacity and high rate capability for lithium ion capacitors, J. Mater. Chem. A, 5(2017), No. 29, p. 15302. doi: 10.1039/C7TA03862C
    [21]
    S. Mancillas-Salas, J. Barroso-Flores, R. Villaurrutia, V. García-Montalvo, and E. López-Honorato, Production of few-layer graphene by wet media milling using organic solvents and different types of graphite, Ceram. Int., 46(2020), No. 2, p. 2413. doi: 10.1016/j.ceramint.2019.09.235
    [22]
    Z. Ma, Y. Cui, X. Xiao, et al., A reconstructed graphite-like carbon micro/nano-structure with higher capacity and comparative voltage plateau of graphite, J. Mater. Chem. A, 4(2016), No. 29, p. 11462. doi: 10.1039/C6TA02195F
    [23]
    Y. Gao, J.L. Zhang, Y.Q. Chen, and C.Y. Wang, Improvement of the electrochemical performance of spent graphite by asphalt coating, Surf. Interfaces, 24(2021), art. No. 101089. doi: 10.1016/j.surfin.2021.101089
    [24]
    J. Yang, X.Y. Zhou, Y.L. Zou, and J.J. Tang, A hierarchical porous carbon material for high power, lithium ion batteries, Electrochim. Acta, 56(2011), No. 24, p. 8576. doi: 10.1016/j.electacta.2011.07.047
    [25]
    J.H. Hou, C.B. Cao, F. Idrees, and X.L. Ma, Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors, ACS Nano, 9(2015), No. 3, p. 2556. doi: 10.1021/nn506394r
    [26]
    N. Cao, Y.L. Zhang, L.L. Chen, et al., An innovative approach to recover anode from spent lithium-ion battery, J. Power Sources, 483(2021), art. No. 229163. doi: 10.1016/j.jpowsour.2020.229163
    [27]
    S. Zhang and P.F. Shi, Electrochemical impedance study of lithium intercalation into MCMB electrode in a gel electrolyte, Electrochim. Acta, 49(2004), No. 9-10, p. 1475. doi: 10.1016/S0013-4686(03)00929-0
    [28]
    Y.X. Chen, J. Li, Y.Q. Lai, J.M. Li, and Z.A. Zhang, Tailoring graphitic nanostructures in hard carbons as anode materials achieving efficient and ultrafast sodium storage, J. Mater. Sci., 53(2018), No. 14, p. 10313. doi: 10.1007/s10853-018-2295-3
    [29]
    J.K. Ou, Y.Z. Zhang, L. Chen, et al., Nitrogen-rich porous carbon derived from biomass as a high performance anode material for lithium ion batteries, J. Mater. Chem. A, 3(2015), No. 12, p. 6534. doi: 10.1039/C4TA06614F
    [30]
    S.B. Yang, X.L. Feng, L.J. Zhi, Q. Cao, J. Maier, and K. Müllen, Nanographene-constructed hollow carbon spheres and their favorable electroactivity with respect to lithium storage, Adv. Mater., 22(2010), No. 7, p. 838. doi: 10.1002/adma.200902795
    [31]
    A. Ramos, I. Cameán, N. Cuesta, and A.B. García, Graphitized stacked-cup carbon nanofibers as anode materials for lithium-ion batteries, Electrochim. Acta, 146(2014), p. 769. doi: 10.1016/j.electacta.2014.09.035
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(5)

    Share Article

    Article Metrics

    Article Views(1809) PDF Downloads(25) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return