Qi Zhang, Guanghui Chen, Yuemeng Zhu, Zhengliang Xue,  and Guang Xu, Effects of heating temperature and atmosphere on element distribution and microstructure in high-Mn/Al austenitic low-density steel, Int. J. Miner. Metall. Mater., 31(2024), No. 12, pp. 2670-2680. https://doi.org/10.1007/s12613-024-2867-y
Cite this article as:
Qi Zhang, Guanghui Chen, Yuemeng Zhu, Zhengliang Xue,  and Guang Xu, Effects of heating temperature and atmosphere on element distribution and microstructure in high-Mn/Al austenitic low-density steel, Int. J. Miner. Metall. Mater., 31(2024), No. 12, pp. 2670-2680. https://doi.org/10.1007/s12613-024-2867-y
Research Article

Effects of heating temperature and atmosphere on element distribution and microstructure in high-Mn/Al austenitic low-density steel

+ Author Affiliations
  • Corresponding author:

    Guanghui Chen    E-mail: chenguanghui@wust.edu.cn

  • Received: 12 October 2023Revised: 20 February 2024Accepted: 26 February 2024Available online: 27 February 2024
  • The elemental distribution and microstructure near the surface of high-Mn/Al austenitic low-density steel were investigated after isothermal holding at temperatures of 900–1200°C in different atmospheres, including air, N2, and N2 + CO2. No ferrite was formed near the surface of the experimental steel during isothermal holding at 900 and 1000°C in air, while ferrite was formed near the steel surface at holding temperatures of 1100 and 1200°C. The ferrite fraction was larger at 1200°C because more C and Mn diffused to the surface, exuded from the steel, and then reacted with N and O to form oxidation products. The thickness of the compound scale increased owing to the higher diffusion rate at higher temperatures. In addition, after isothermal holding at 1100°C in N2, the Al content near the surface slightly decreased, while the C and Mn contents did not change. Therefore, no ferrite was formed near the surface. However, the near-surface C and Al contents decreased after holding at 1100°C in the N2 + CO2 mixed atmosphere, resulting in the formation of a small amount of ferrite. The compound scale was thickest in N2, followed by the N2 + CO2 mixed atmosphere, and thinnest in air. Overall, the element loss and ferrite fraction were largest after holding in air at the same temperature. The differences in element loss and ferrite fraction between in N2 and N2 + CO2 atmospheres were small, but the compound scale formed in N2 was significantly thicker. According to these results, N2 + CO2 is the ideal heating atmosphere for the industrial production of high-Mn/Al austenitic low-density steel.
  • loading
  • [1]
    S.F. Hu, Z.B. Zheng, W.P. Yang, and H.K. Yang, Fe–Mn–C–Al low-density steel for structural materials: A review of alloying, heat treatment, microstructure, and mechanical properties, Steel Res. Int., 93(2022), No. 9, art. No. 2200191. doi: 10.1002/srin.202200191
    [2]
    H. Ding, D.G. Liu, M.H. Cai, and Y. Zhang, Austenite-based Fe–Mn–Al–C lightweight steels: Research and prospective, Metals, 12(2022), No. 10, art. No. 1572. doi: 10.3390/met12101572
    [3]
    C.M. Tang, Z.Q. Guo, J. Pan, et al., Current situation of carbon emissions and countermeasures in China’s ironmaking industry, Int. J. Miner. Metall. Mater., 30(2023), No. 9, p. 1633. doi: 10.1007/s12613-023-2632-7
    [4]
    X. Lu, W.J. Tian, H. Li, X.J. Li, K. Quan, and H. Bai, Decarbonization options of the iron and steelmaking industry based on a three-dimensional analysis, Int. J. Miner. Metall. Mater., 30(2023), No. 2, p. 388. doi: 10.1007/s12613-022-2475-7
    [5]
    I. Gutierrez-Urrutia, Low density Fe–Mn–Al–C steels: Phase structures, mechanisms and properties, ISIJ Int., 61(2021), No. 1, p. 16. doi: 10.2355/isijinternational.ISIJINT-2020-467
    [6]
    S.P. Chen, R. Rana, A. Haldar, and R.K. Ray, Current state of Fe–Mn–Al–C low density steels, Prog. Mater. Sci., 89(2017), p. 345. doi: 10.1016/j.pmatsci.2017.05.002
    [7]
    H.T. Lu, D.Z. Li, S.Y. Li, and Y.A. Chen, Hot deformation behavior of Fe–27.34Mn–8.63Al–1.03C lightweight steel, Int. J. Miner. Metall. Mater., 30(2023), No. 4, p. 734. doi: 10.1007/s12613-022-2531-3
    [8]
    N.I. Ramos-Fabián, I. Mejía, M. García-Domínguez, and A. Bedolla-Jacuinde, Metallographic, structural and mechanical characterization of a low-density austenitic Fe–Mn–Al–C steel microalloyed with Nb in hot-rolling condition, MRS Adv., 8(2023), No. 22, p. 1291. doi: 10.1557/s43580-023-00710-2
    [9]
    Y.X. Liu, M.X. Liu, J.L. Zhang, et al., Microstructure and mechanical properties of a Fe–28Mn–9Al–1.2C–(0, 3, 6, 9)Cr austenitic low-density steel, Mater. Sci. Eng. A, 821(2021), art. No. 141583. doi: 10.1016/j.msea.2021.141583
    [10]
    K.T. Park, S.W. Hwang, C.Y. Son, and J.K. Lee, Effects of heat treatment on microstructure and tensile properties of a Fe–27Mn–12Al–0.8C low-density steel, JOM, 66(2014), No. 9, p. 1828. doi: 10.1007/s11837-014-1064-2
    [11]
    S. Li, Z.N. Yang, H.S. Zurob, H. Chen, C. Zhang, and Z.G. Yang, On the decarburization of surface pearlite, Metall. Mater. Trans. A, 52(2021), No. 8, p. 3198. doi: 10.1007/s11661-021-06328-z
    [12]
    R.K. Wild, Vacuum annealing of stainless steel at temperatures between 770 and 1470K, Corros. Sci., 14(1974), No. 10, p. 575. doi: 10.1016/S0010-938X(74)80021-1
    [13]
    Q. Zhang, G.H. Chen, Y.P. Shen, Z.L. Xue, and G. Xu, Microstructure evolution on the surface of Fe–20Mn–6Al–0.6C–0.15Si austenitic low-density steel during heat treatment, J. Mater. Eng. Perform., (2023). DOI: 10.1007/s11665-023-08803-7
    [14]
    M.X. Zhou, H.X. Wang, M. Zhu, et al., New insights to the metallurgical mechanism of niobium in high-carbon pearlitic steels, J. Mater. Res. Technol., 26(2023), p. 1609. doi: 10.1016/j.jmrt.2023.07.235
    [15]
    H.D. Alvarenga, T. van de Putte, N. van Steenberge, J. Sietsma, and H. Terryn, Influence of carbide morphology and microstructure on the kinetics of superficial decarburization of C–Mn steels, Metall. Mater. Trans. A, 46(2015), No. 1, p. 123. doi: 10.1007/s11661-014-2600-y
    [16]
    Y. Guo, F.Q. Dai, S.T. Hu, and G. Xu, Effect of surface oxidation on decarburization of a Fe–3%Si steel during annealing, ISIJ Int., 58(2018), No. 9, p. 1727. doi: 10.2355/isijinternational.ISIJINT-2018-233
    [17]
    M. Hajduga and J. Kučera, Decarburization of Fe–Cr–C steels during high-temperature oxidation, Oxid. Met., 29(1988), No. 5, p. 419.
    [18]
    X.N. Duan, H. Yu, J. Lu, and Z. Huang, Temperature dependence and formation mechanism of surface decarburization behavior in 35CrMo steel, Steel Res. Int., 90(2019), No. 9, art. No. 1900188. doi: 10.1002/srin.201900188
    [19]
    M.J. Gildersleeve, Relationship between decarburisation and fatigue strength of through hardened and carburising steels, Mater. Sci. Technol., 7(1991), No. 4, p. 307. doi: 10.1179/mst.1991.7.4.307
    [20]
    R.I. Carroll and J.H. Beynon, Decarburisation and rolling contact fatigue of a rail steel, Wear, 260(2006), No. 4-5, p. 523. doi: 10.1016/j.wear.2005.03.005
    [21]
    A. Rafiei, G.A. Irons, and K.S. Coley, Argon-oxygen decarburization of high manganese steels: Effect of temperature, alloy composition, and submergence depth, Metall. Mater. Trans. B, 52(2021), No. 4, p. 2509. doi: 10.1007/s11663-021-02196-5
    [22]
    Y.R. Chen, X.X. Xu, and Y. Liu, Decarburization of 60Si2MnA in atmospheres containing different levels of oxygen, water vapour and carbon dioxide at 700–1000°C, Oxid. Met., 93(2020), No. 1, p. 105. doi: 10.1007/s11085-019-09949-3
    [23]
    Y.B. Liu, W. Zhang, Q. Tong, and Q.S. Sun, Effects of Si and Cr on complete decarburization behavior of high carbon steels in atmosphere of 2 vol.% O2, J. Iron Steel Res. Int., 23(2016), No. 12, p. 1316. doi: 10.1016/S1006-706X(16)30194-7
    [24]
    M. Nomura, H. Morimoto, and M. Toyama, Calculation of ferrite decarburizing depth, considering chemical composition of steel and heating condition, ISIJ Int., 40(2000), No. 6, p. 619. doi: 10.2355/isijinternational.40.619
    [25]
    J.H. Chu and Y.P. Bao, Mn evaporation and denitrification behaviors of molten Mn steel in the vacuum refining with slag process, Int. J. Miner. Metall. Mater., 28(2021), No. 8, p. 1288. doi: 10.1007/s12613-021-2311-5
    [26]
    J.H. Chu and Y.P. Bao, Volatilization behavior of manganese from molten steel with different alloying methods in vacuum, Metals, 10(2020), No. 10, art. No. 1348. doi: 10.3390/met10101348
    [27]
    F.J. Lan, C.L. Zhuang, C.R. Li, J.B. Chen, G.K. Yang, and H.J. Yao, Study on manganese volatilization behavior of Fe–Mn–C–Al twinning-induced plasticity steel, High Temp. Mater. Process., 40(2021), No. 1, p. 461. doi: 10.1515/htmp-2021-0049
    [28]
    A.F. Smitll and R. Hales, Diffusion of manganese in type 316 austenitic stainless steel, Met. Sci., 9(1975), No. 1, p. 181. doi: 10.1179/030634575790444432
    [29]
    S.D. Catteau, T. Sourmail, and A. Moine, Dilatometric study of phase transformations in steels: Some issues, Mater. Perform. Charact., 5(2016), No. 5, p. 564.
    [30]
    S. Kumar and G.S. Mahobia, Cyclic oxidation of Fe–18Cr–21Mn–0.65N austenitic stainless steel at 400–700°C, Trans. Indian Inst. Met., 73(2020), No. 10, p. 2457. doi: 10.1007/s12666-020-02050-3
    [31]
    Y. Guo, J.H. Zhao, B. Xu, C. Gu, K.Q. Feng, and Y.J. Wang, Effect of high-temperature oxidation on the subsurface microstructure and magnetic property of medium manganese austenitic steel, J. Alloys Compd., 913(2022), art. No. 165254. doi: 10.1016/j.jallcom.2022.165254
    [32]
    V. de Freitas Cunha Lins, M.A. Freitas, and E.M. de Paula E Silva, Oxidation kinetics of an Fe–31.8Mn–6.09Al–1.60Si–0.40C alloy at temperatures from 600 to 900°C, Corros. Sci., 46(2004), No. 8, p. 1895. doi: 10.1016/j.corsci.2003.10.015
    [33]
    A.M. de Sousa Malafaia, L. Latu-Romain, and Y. Wouters, High temperature oxidation resistance improvement in an FeMnSiCrNi alloy by Mn-depletion under vacuum annealing, Mater. Lett., 241(2019), p. 164. doi: 10.1016/j.matlet.2019.01.074
    [34]
    G.H. Chen, R. Rahimi, G. Xu, H. Biermann, and J. Mola, Impact of Al addition on deformation behavior of Fe–Cr–Ni–Mn–C austenitic stainless steel, Mater. Sci. Eng. A, 797(2020), art. No. 140084. doi: 10.1016/j.msea.2020.140084
    [35]
    G.H. Chen, G. Xu, H. Biermann, and J. Mola, Microstructure and mechanical properties of Co-added and Al-added austenitic stainless steels, Mater. Sci. Eng. A, 854(2022), art. No. 143832. doi: 10.1016/j.msea.2022.143832
    [36]
    P. Han, Z.P. Liu, Z.J. Xie, et al., Influence of band microstructure on carbide precipitation behavior and toughness of 1 GPa-grade ultra-heavy gauge low-alloy steel, Int. J. Miner. Metall. Mater., 30(2023), No. 7, p. 1329. doi: 10.1007/s12613-023-2597-6
    [37]
    A.J. Maldonado, K.P. Misra, and R.D.K. Misra, Grain boundary segregation in a high entropy alloy, Mater. Technol., 38(2023), No. 1, art. No. 2221959. doi: 10.1080/10667857.2023.2221959
    [38]
    Z.Y. Huang, Y.S. Jiang, A.L. Hou, et al., Rietveld refinement, microstructure and high-temperature oxidation characteristics of low-density high manganese steels, J. Mater. Sci. Technol., 33(2017), No. 12, p. 1531. doi: 10.1016/j.jmst.2017.09.012
    [39]
    J.G. Duh and C.J. Wang, Formation and growth morphology of oxidation-induced ferrite layer in Fe–Mn–Al–Cr–C alloys, J. Mater. Sci., 25(1990), No. 4, p. 2063. doi: 10.1007/BF01045765
    [40]
    Y.L. Yang, C.H. Yang, S.N. Lin, C.H. Chen, and W.T. Tsai, Effects of Si and its content on the scale formation on hot-rolled steel strips, Mater. Chem. Phys., 112(2008), No. 2, p. 566. doi: 10.1016/j.matchemphys.2008.06.021
    [41]
    S.H. Park, I.S. Chung, and T.W. Kim, Characterization of the high-temperature oxidation behavior in Fe–25Mn–1.5Al–0.5C alloy, Oxid. Met., 49(1998), No. 3, p. 349.
    [42]
    P.R.S. Jackson and G.R. Wallwork, High temperature oxidation of iron–manganese–aluminum based alloys, Oxid. Met., 21(1984), No. 3, p. 135.
    [43]
    W.S. Yang and C.M. Wan, High temperature studies of Fe–Mn–Al–C alloys with different manganese concentrations in air and nitrogen, J. Mater. Sci., 24(1989), No. 10, p. 3497. doi: 10.1007/BF02385731
    [44]
    J.L. Sun, B.Y. Huang, J.Q. He, E.C. Meng, and Q.H. Chang, Achieving oxidation protection effect for strips hot rolling via Al2O3 nanofluid lubrication, Int. J. Miner. Metall. Mater., 30(2023), No. 5, p. 908. doi: 10.1007/s12613-022-2493-5
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)

    Share Article

    Article Metrics

    Article Views(303) PDF Downloads(20) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return