Jiaqiang Li, Hongtao Zhang, Jingtai Sun, Huadong Fu, and Jianxin Xie, Design of low-alloying and high-performance solid solution-strengthened copper alloys with element substitution for sustainable development, Int. J. Miner. Metall. Mater., 31(2024), No. 5, pp. 826-832. https://doi.org/10.1007/s12613-024-2870-3
Cite this article as:
Jiaqiang Li, Hongtao Zhang, Jingtai Sun, Huadong Fu, and Jianxin Xie, Design of low-alloying and high-performance solid solution-strengthened copper alloys with element substitution for sustainable development, Int. J. Miner. Metall. Mater., 31(2024), No. 5, pp. 826-832. https://doi.org/10.1007/s12613-024-2870-3
Research Article

Design of low-alloying and high-performance solid solution-strengthened copper alloys with element substitution for sustainable development

+ Author Affiliations
  • Corresponding authors:

    Hongtao Zhang    E-mail: zht@ustb.edu.cn

    Jianxin Xie    E-mail: jxxie@mater.ustb.edu.cn

  • Received: 10 October 2023Revised: 21 January 2024Accepted: 27 February 2024Available online: 28 February 2024
  • Solid solution-strengthened copper alloys have the advantages of a simple composition and manufacturing process, high mechanical and electrical comprehensive performances, and low cost; thus, they are widely used in high-speed rail contact wires, electronic component connectors, and other devices. Overcoming the contradiction between low alloying and high performance is an important challenge in the development of solid solution-strengthened copper alloys. Taking the typical solid solution-strengthened alloy Cu–4Zn–1Sn as the research object, we proposed using the element In to replace Zn and Sn to achieve low alloying in this work. Two new alloys, Cu–1.5Zn–1Sn–0.4In and Cu–1.5Zn–0.9Sn–0.6In, were designed and prepared. The total weight percentage content of alloying elements decreased by 43% and 41%, respectively, while the product of ultimate tensile strength (UTS) and electrical conductivity (EC) of the annealed state increased by 14% and 15%. After cold rolling with a 90% reduction, the UTS of the two new alloys reached 576 and 627 MPa, respectively, the EC was 44.9%IACS and 42.0%IACS, and the product of UTS and EC (UTS × EC) was 97% and 99% higher than that of the annealed state alloy. The dislocations proliferated greatly in cold-rolled alloys, and the strengthening effects of dislocations reached 332 and 356 MPa, respectively, which is the main reason for the considerable improvement in mechanical properties.
  • loading
  • [1]
    Y.X. Jiang, H.F. Lou, H.F. Xie, et al., Development status and prospects of advanced copper alloy, Strategic Study of CAE, 22(2020), No. 5, p. 84. doi: 10.15302/J-SSCAE-2020.05.015
    [2]
    C.Z. Huang, Y.B. Jiang, Z.X. Wu, et al., Significantly enhanced high-temperature mechanical properties of Cu–Cr–Zn–Zr–Si alloy with stable second phases and grain boundaries, Mater. Des., 233(2023), art. No. 112292. doi: 10.1016/j.matdes.2023.112292
    [3]
    K. Maki, Y. Ito, H. Matsunaga, and H. Mori, Solid-solution copper alloys with high strength and high electrical conductivity, Scripta Mater., 68(2013), No. 10, p. 777. doi: 10.1016/j.scriptamat.2012.12.027
    [4]
    J.R. Davis, ASM Specialty Handbook : Copper and Copper Alloys, ASM International, Ohio, 2001.
    [5]
    H. Zhang, X.C. Deng, and G.H. Zhang, Preparation and properties of multiphase solid-solution strengthened high-performance W–Cu alloys through alloying with Mo, Fe and Ni, Mater. Sci. Eng. A, 871(2023), art. No. 144909. doi: 10.1016/j.msea.2023.144909
    [6]
    S.W. Huang, P.F. Zhou, F.X. Luo, et al., Effects of Ni and Mn contents on precipitation and strengthening behavior in Cu–Ni–Mn ternary alloys, Mater. Charact., 199(2023), art. No. 112775. doi: 10.1016/j.matchar.2023.112775
    [7]
    J.Y. Wang, X.Q. Lü, S.Q. Chen, Y. Gao, and Y. Liu, Effect of Ni content on the solid solution strengthening behavior of Cu–Ni–Ag alloys, Mater. Sci. Eng. Powder Metall., 26(2021), No. 3, p. 263.
    [8]
    R.W. Liao, L.R. Wang, X.Z. Liu, and Y. Liu, Microstructure and properties of Cu–Zn–Al–Fe alloy, Hot Working Technol., 48(2019), No. 16. p. 75.
    [9]
    P. Yang, D.Y. He, W. Shao, et al., Study of the microstructure and mechanical properties of Cu–Sn alloys formed by selective laser melting with different Sn contents, J. Mater. Res. Technol., 24(2023), p. 5476. doi: 10.1016/j.jmrt.2023.04.198
    [10]
    E. Bruder, P. Braun, H.U. Rehman, et al., Influence of solute effects on the saturation grain size and rate sensitivity in Cu–X alloys, Scripta Mater., 144(2018), p. 5. doi: 10.1016/j.scriptamat.2017.09.031
    [11]
    E.A. Olivetti and J.M. Cullen, Toward a sustainable materials system, Science, 360(2018), No. 6396, p. 1396. doi: 10.1126/science.aat6821
    [12]
    D. Raabe, C.C. Tasan, and E.A. Olivetti, Strategies for improving the sustainability of structural metals, Nature, 575(2019), p. 64. doi: 10.1038/s41586-019-1702-5
    [13]
    X.Y. Li and K. Lu, Playing with defects in metals, Nat. Mater., 16(2017), No. 7, p. 700. doi: 10.1038/nmat4929
    [14]
    X.Y. Li and K. Lu, Improving sustainability with simpler alloys, Science, 364(2019), No. 6442, p. 733. doi: 10.1126/science.aaw9905
    [15]
    H.T. Zhang, H.D. Fu, X.Q. He, et al., Dramatically enhanced combination of ultimate tensile strength and electric conductivity of alloys via machine learning screening, Acta Mater., 200(2020), p. 803. doi: 10.1016/j.actamat.2020.09.068
    [16]
    S.S. Zhang, H.H. Zhu, L. Zhang, W.Q. Zhang, H.Q. Yang, and X.Y. Zeng, Microstructure and properties in QCr0.8 alloy produced by selective laser melting with different heat treatment, J. Alloys Compd., 800(2019), p. 286. doi: 10.1016/j.jallcom.2019.06.018
    [17]
    X.W. Zuo, K. Han, C.C. Zhao, R.M. Niu, and E.G. Wang, Microstructure and properties of nanostructured Cu28wt%Ag microcomposite deformed after solidifying under a high magnetic field, Mater. Sci. Eng. A, 619(2014), p. 319. doi: 10.1016/j.msea.2014.09.070
    [18]
    T.P. Harzer, S. Djaziri, R. Raghavan, and G. Dehm, Nanostructure and mechanical behavior of metastable Cu–Cr thin films grown by molecular beam epitaxy, Acta Mater., 83(2015), p. 318. doi: 10.1016/j.actamat.2014.10.013
    [19]
    A. Akhtar and E. Teghtsoonian, Substitutional solution hardening of magnesium single crystals, Philos. Mag., 25(1972), No. 4, p. 897. doi: 10.1080/14786437208229311
    [20]
    J.Z. Li, H. Ding, B.M. Li, W.L. Gao, J. Bai, and G. Sha, Effect of Cr and Sn additions on microstructure, mechanical-electrical properties and softening resistance of Cu–Cr–Sn alloy, Mater. Sci. Eng. A, 802(2021), art. No. 140628. doi: 10.1016/j.msea.2020.140628
    [21]
    H.E. Friedrich and B.L. Mordike, Magnesium technology, Springer-Verlag Berlin Heidelberg, Berlin, 2006.
    [22]
    L. Balogh, T. Ungár, Y.H. Zhao, et al., Influence of stacking-fault energy on microstructural characteristics of ultrafine-grain copper and copper–zinc alloys, Acta Mater., 56(2008), No. 4, p. 809. doi: 10.1016/j.actamat.2007.10.053
    [23]
    Y. Zhang, N.R. Tao, and K. Lu, Mechanical properties and rolling behaviors of nano-grained copper with embedded nano-twin bundles, Acta Mater., 56(2008), No. 11, p. 2429. doi: 10.1016/j.actamat.2008.01.030
    [24]
    N. Hansen, Hall–Petch relation and boundary strengthening, Scripta Mater., 51(2004), No. 8, p. 801. doi: 10.1016/j.scriptamat.2004.06.002
    [25]
    Y. Liu, Z. Li, Y.X. Jiang, Y. Zhang, Z.Y. Zhou, and Q. Lei, The microstructure evolution and properties of a Cu–Cr–Ag alloy during thermal-mechanical treatment, J. Mater. Res., 32(2017), No. 7, p. 1324. doi: 10.1557/jmr.2017.17
    [26]
    K. Yamaguchi, T. Ishigaki, Y. Inoue, et al., Comprehensive elemental screening of solid-solution copper alloys, Sci. Technol. Adv. Mater.: Methods, 3(2023), No. 1, art. No. 2250704. doi: 10.1080/27660400.2023.2250704
    [27]
    Y. Abe, S. Semboshi, N. Masahashi, S.H. Lim, E.A. Choi, and S.Z. Han, Mechanical strength and electrical conductivity of Cu–In solid solution alloy wires, Metall. Mater. Trans. A, 54(2023), No. 3, p. 928. doi: 10.1007/s11661-022-06938-1
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Share Article

    Article Metrics

    Article Views(437) PDF Downloads(25) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return