Cite this article as: |
Shanshan Jiang, Hao Qiu, Shaohua Xu, Xiaomin Xu, Jingjing Jiang, Beibei Xiao, Paulo Sérgio Barros Julião, Chao Su, Daifen Chen, and Wei Zhou, Investigation and optimization of high-valent Ta-doped SrFeO3–δ as air electrode for intermediate-temperature solid oxide fuel cells, Int. J. Miner. Metall. Mater., 31(2024), No. 9, pp. 2102-2109. https://doi.org/10.1007/s12613-024-2872-1 |
Shanshan Jiang E-mail: jss522@just.edu.cn
Chao Su E-mail: chao.su@just.edu.cn
[1] |
Y. Zhang, B. Chen, D.Q. Guan, et al., Thermal-expansion offset for high-performance fuel cell cathodes, Nature, 591(2021), p. 246. doi: 10.1038/s41586-021-03264-1
|
[2] |
G.M. Yang, C. Su, H.G. Shi, et al., Toward reducing the operation temperature of solid oxide fuel cells: Our past 15 years of efforts in cathode development, Energy Fuels, 34(2020), No. 12, p. 15169. doi: 10.1021/acs.energyfuels.0c01887
|
[3] |
M. Wang, C. Su, Z.H. Zhu, H. Wang, and L. Ge, Composite cathodes for protonic ceramic fuel cells: Rationales and materials, Composites Part B, 238(2022), art. No. 109881. doi: 10.1016/j.compositesb.2022.109881
|
[4] |
J. Song, Y.Y. Birdja, D. Pant, Z.Y. Chen, and J. Vaes, Recent progress in the structure optimization and development of proton-conducting electrolyte materials for low-temperature solid oxide cells, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 848. doi: 10.1007/s12613-022-2447-y
|
[5] |
W.N.A.W. Yusoff, N.A. Baharuddin, M.R. Somalu, A. Muchtar, N.P. Brandon, and H.Q. Fan, Recent advances and influencing parameters in developing electrode materials for symmetrical solid oxide fuel cells, Int. J. Miner. Metall. Mater., 30(2023), No. 10, p. 1933. doi: 10.1007/s12613-023-2694-6
|
[6] |
G.Y. Liu, F.G. Hou, S.L. Peng, X.D. Wang, and B.Z. Fang, Process and challenges of stainless steel based bipolar plates for proton exchange membrane fuel cells, Int. J. Miner. Metall. Mater., 29(2022), No. 5, p. 1099. doi: 10.1007/s12613-022-2485-5
|
[7] |
X. Yang, Z.H. Du, Q. Zhang, et al., Effects of operating conditions on the performance degradation and anode microstructure evolution of anode-supported solid oxide fuel cells, Int. J. Miner. Metall. Mater., 30(2023), No. 6, p. 1181. doi: 10.1007/s12613-023-2616-7
|
[8] |
P. Bhupaijit, C. Kaewsai, T. Suriwong, et al., Effect of Co2+ substitution in B-sites of the perovskite system on the phase formation, microstructure, electrical and magnetic properties of Bi0.5(Na0.68K0.22Li0.10)0.5TiO3 ceramics, Int. J. Miner. Metall. Mater., 29(2022), No. 9, p. 1798. doi: 10.1007/s12613-021-2345-8
|
[9] |
J. Yu, Z. Li, T. Liu, et al., Morphology control and electronic tailoring of Co xA y (A = P, S, Se) electrocatalysts for water splitting, Chem. Eng. J., 460(2023), art. No. 141674. doi: 10.1016/j.cej.2023.141674
|
[10] |
J.X. Pan, Y.J. Ye, M.Z. Zhou, et al., Improving the activity and stability of Ni-based electrodes for solid oxide cells through surface engineering: Recent progress and future perspectives, Mater. Rep. Energy, 1(2021), No. 2, art. No. 100025.
|
[11] |
F.L. Liang, W. Zhou, and Z.H. Zhu, A highly stable and active hybrid cathode for low-temperature solid oxide fuel cells, ChemElectroChem, 1(2014), No. 10, p. 1627. doi: 10.1002/celc.201402143
|
[12] |
S.Y. Li, Z. Lü, B. Wei, et al., A study of (Ba0.5Sr0.5)1− x Sm xCo0.8Fe0.2O3− δ as a cathode material for IT-SOFCs, J. Alloys Compd., 426(2006), No. 1-2, p. 408. doi: 10.1016/j.jallcom.2006.02.040
|
[13] |
S. Park, S. Choi, J. Shin, and G. Kim, Tradeoff optimization of electrochemical performance and thermal expansion for Co-based cathode material for intermediate-temperature solid oxide fuel cells, Electrochim. Acta, 125(2014), p. 683. doi: 10.1016/j.electacta.2014.01.112
|
[14] |
Q. Huang, S.S. Jiang, Y.J. Wang, et al., Highly active and durable triple conducting composite air electrode for low-temperature protonic ceramic fuel cells, Nano Res., 16(2023), No. 7, p. 9280. doi: 10.1007/s12274-023-5531-3
|
[15] |
A. Wedig, R. Merkle, B. Stuhlhofer, H.U. Habermeier, J. Maier, and E. Heifets, Fast oxygen exchange kinetics of pore-free Bi1− xSr xFeO3− δ thin films, Phys. Chem. Chem. Phys., 13(2011), No. 37, p. 16530. doi: 10.1039/c1cp21684h
|
[16] |
S.S. Jiang, J. Sunarso, W. Zhou, J. Shen, R. Ran, and Z.P. Shao, Cobalt-free SrNb xFe1− xO3− δ (x = 0.05, 0.1 and 0.2) perovskite cathodes for intermediate temperature solid oxide fuel cells, J. Power Sources, 298(2015), p. 209. doi: 10.1016/j.jpowsour.2015.08.063
|
[17] |
Y.C. Zhou, X. Meng, X.J. Liu, et al., Novel architectured metal-supported solid oxide fuel cells with Mo-doped SrFeO3− δ electrocatalysts, J. Power Sources, 267(2014), p. 148. doi: 10.1016/j.jpowsour.2014.04.157
|
[18] |
J.H. Piao, K.N. Sun, N.Q. Zhang, X.B. Chen, S. Xu, and D.R. Zhou, Preparation and characterization of Pr1− xSr xFeO3 cathode material for intermediate temperature solid oxide fuel cells, J. Power Sources, 172(2007), No. 2, p. 633. doi: 10.1016/j.jpowsour.2007.05.023
|
[19] |
Y.F. Song, Y.B. Chen, M.G. Xu, et al., A cobalt-free multi-phase nanocomposite as near-ideal cathode of intermediate-temperature solid oxide fuel cells developed by smart self-assembly, Adv. Mater., 32(2020), No. 8, art. No. e1906979. doi: 10.1002/adma.201906979
|
[20] |
H.G. Shi, C. Su, X.M. Xu, et al., Building Ruddlesden-Popper and single perovskite nanocomposites: A new strategy to develop high-performance cathode for protonic ceramic fuel cells, Small, 17(2021), No. 35, art. No. e2101872. doi: 10.1002/smll.202101872
|
[21] |
F.L. Liang, Z.X. Wang, Z.R. Wang, J.K. Mao, and J. Sunarso, Electrochemical performance of cobalt-free Nb and Ta co-doped perovskite cathodes for intermediate-temperature solid oxide fuel cells, ChemElectroChem, 4(2017), No. 9, p. 2366. doi: 10.1002/celc.201700236
|
[22] |
D.M. Huan, L. Zhang, K. Zhu, et al., Oxygen vacancy-engineered cobalt-free Ruddlesden-Popper cathode with excellent CO2 tolerance for solid oxide fuel cells, J. Power Sources, 497(2021), art. No. 229872. doi: 10.1016/j.jpowsour.2021.229872
|
[23] |
T.H. Wan, M. Saccoccio, C. Chen, and F. Ciucci, Influence of the discretization methods on the distribution of relaxation times deconvolution: Implementing radial basis functions with DRT tools, Electrochim. Acta, 184(2015), p. 483. doi: 10.1016/j.electacta.2015.09.097
|