Jiang Yu, Yaoxiang Geng, Yongkang Chen, Xiao Wang, Zhijie Zhang, Hao Tang, Junhua Xu, Hongbo Ju,  and Dongpeng Wang, High-strength and thermally stable TiB2-modified Al–Mn–Mg–Er–Zr alloy fabricated via selective laser melting, Int. J. Miner. Metall. Mater., 31(2024), No. 10, pp. 2221-2232. https://doi.org/10.1007/s12613-024-2879-7
Cite this article as:
Jiang Yu, Yaoxiang Geng, Yongkang Chen, Xiao Wang, Zhijie Zhang, Hao Tang, Junhua Xu, Hongbo Ju,  and Dongpeng Wang, High-strength and thermally stable TiB2-modified Al–Mn–Mg–Er–Zr alloy fabricated via selective laser melting, Int. J. Miner. Metall. Mater., 31(2024), No. 10, pp. 2221-2232. https://doi.org/10.1007/s12613-024-2879-7
Research Article

High-strength and thermally stable TiB2-modified Al–Mn–Mg–Er–Zr alloy fabricated via selective laser melting

+ Author Affiliations
  • Corresponding author:

    Yaoxiang Geng    E-mail: yaoxianggeng@163.com

  • Received: 18 November 2023Revised: 7 March 2024Accepted: 7 March 2024Available online: 9 March 2024
  • To increase the processability and plasticity of the selective laser melting (SLM) fabricated Al–Mn–Mg–Er–Zr alloys, a novel TiB2-modified Al–Mn–Mg–Er–Zr alloy with a mixture of Al–Mn–Mg–Er–Zr and nano-TiB2 powders was fabricated by SLM. The processability, microstructure, and mechanical properties of the alloy were systematically investigated by density measurement, microstructure characterization, and mechanical properties testing. The alloys fabricated at 250 W displayed higher relative densities due to a uniformly smooth top surface and appropriate laser energy input. The maximum relative density value of the alloy reached (99.7 ± 0.1)%, demonstrating good processability. The alloy exhibited a duplex grain microstructure consisting of columnar regions primarily and equiaxed regions with TiB2, Al6Mn, and Al3Er phases distributed along the grain boundaries. After directly aging treatment at a high temperature of 400°C, the strength of the SLM-fabricated TiB2/Al–Mn–Mg–Er–Zr alloy increased due to the precipitation of the secondary Al6Mn phases. The maximum yield strength and ultimate tensile strength of the aging alloy were measured to be (374 ± 1) and (512 ± 13) MPa, respectively. The SLM-fabricated TiB2/Al–Mn–Mg–Er–Zr alloy demonstrates exceptional strength and thermal stability due to the synergistic effects of the inhibition of grain growth, the incorporation of TiB2 nanoparticles, and the precipitation of secondary Al6Mn nanoparticles.
  • loading
  • [1]
    N.T. Aboulkhair, M. Simonelli, L. Parry, I. Ashcroft, C. Tuck, and R. Hague, 3D printing of aluminium alloys: Additive manufacturing of aluminium alloys using selective laser melting, Prog. Mater. Sci., 106(2019), art. No. 100578. doi: 10.1016/j.pmatsci.2019.100578
    [2]
    Y.X. Geng, H. Tang, J.H. Xu, et al., Influence of process parameters and aging treatment on the microstructure and mechanical properties of AlSi8Mg3 alloy fabricated by selective laser melting, Int. J. Miner. Metall. Mater., 29(2022), No. 9, p. 1770. doi: 10.1007/s12613-021-2287-1
    [3]
    Y.X. Geng, Q. Wang, Y.M. Wang, et al., Microstructural evolution and strengthening mechanism of high-strength AlSi8.1Mg1.4 alloy produced by selective laser melting, Mater. Des., 218(2022), art. No. 110674. doi: 10.1016/j.matdes.2022.110674
    [4]
    L.Y. Chen, S.X. Liang, Y.J. Liu, and L.C. Zhang, Additive manufacturing of metallic lattice structures: Unconstrained design, accurate fabrication, fascinated performances, and challenges, Mater. Sci. Eng. R, 146(2021), art. No. 100648. doi: 10.1016/j.mser.2021.100648
    [5]
    L. Zhao, L.B. Song, J.G. Santos Macías, et al., Review on the correlation between microstructure and mechanical performance for laser powder bed fusion AlSi10Mg, Addit. Manuf., 56(2022), art. No. 102914. doi: 10.1016/j.addma.2022.102914
    [6]
    K. Schmidtke, F. Palm, A. Hawkins, and C. Emmelmann, Process and mechanical properties: Applicability of a scandium modified Al-alloy for laser additive manufacturing, Phys. Procedia, 12(2011), p. 369. doi: 10.1016/j.phpro.2011.03.047
    [7]
    Q.B. Jia, P. Rometsch, P. Kürnsteiner, et al., Selective laser melting of a high strength AlMnSc alloy: Alloy design and strengthening mechanisms, Acta Mater., 171(2019), p. 108. doi: 10.1016/j.actamat.2019.04.014
    [8]
    R.D. Li, M.B. Wang, Z.M. Li, P. Cao, T.C. Yuan, and H.B. Zhu, Developing a high-strength Al–Mg–Si–Sc–Zr alloy for selective laser melting: Crack-inhibiting and multiple strengthening mechanisms, Acta Mater., 193(2020), p. 83. doi: 10.1016/j.actamat.2020.03.060
    [9]
    Y.X. Geng, H. Tang, J.H. Xu, Z.J. Zhang, Y.K. Xiao, and Y. Wu, Strengthening mechanisms of high-performance Al–Mn–Mg–Sc–Zr alloy fabricated by selective laser melting, Sci. China Mater., 64(2021), No. 12, p. 3131. doi: 10.1007/s40843-021-1719-8
    [10]
    H. Tang, Y.X. Geng, S.N. Bian, J.H. Xu, and Z.J. Zhang, An ultra-high strength over 700 MPa in Al–Mn–Mg–Sc–Zr alloy fabricated by selective laser melting, Acta Metall. Sin. Engl. Lett., 35(2022), No. 3, p. 466. doi: 10.1007/s40195-021-01286-2
    [11]
    H. Tang, Y.X. Geng, J.J. Luo, J.H. Xu, H.B. Ju, and L.H. Yu, Mechanical properties of high Mg-content Al–Mg–Sc–Zr alloy fabricated by selective laser melting, Met. Mater. Int., 27(2021), No. 8, p. 2592. doi: 10.1007/s12540-020-00907-2
    [12]
    J.R. Croteau, S. Griffiths, M.D. Rossell, et al., Microstructure and mechanical properties of Al–Mg–Zr alloys processed by selective laser melting, Acta Mater., 153(2018), p. 35. doi: 10.1016/j.actamat.2018.04.053
    [13]
    L. Zhou, H. Hyer, S. Park, et al., Microstructure and mechanical properties of Zr-modified aluminum alloy 5083 manufactured by laser powder bed fusion, Addit. Manuf., 28(2019), p. 485.
    [14]
    Y.X. Geng, C.G. Jia, J.H. Xu, et al., Selective laser melting of a novel high-strength Er- and Zr-modified Al–Mn–Mg alloy, Mater. Lett., 313(2022), art. No. 131762. doi: 10.1016/j.matlet.2022.131762
    [15]
    J. Yu, Y.X. Geng, Z.J. Zhang, and H.B. Ju, Densification, microstructural, and mechanical properties of Al–Mn–Mg–Er–Zr alloy fabricated by laser powder bed fusion, Met. Mater. Int., 29(2023), No. 11, p. 3235. doi: 10.1007/s12540-023-01449-z
    [16]
    J. Yu, Y.X. Geng, H.B. Ju, Z.J. Zhang, and J.H. Xu, Selective laser melted Al–Mn–Mg–Er–Zr–Si alloy: Crack elimination and strength enhancement by alloying with Si, Trans. Nonferrous Met. Soc. China, 2023. https://kns.cnki.net/kcms2/detail/43.1239.TG.20230727.1754.038.html.
    [17]
    S.Y. Zhou, Y. Su, H. Wang, J. Enz, T. Ebel, and M. Yan, Selective laser melting additive manufacturing of 7xxx series Al–Zn–Mg–Cu alloy: Cracking elimination by co-incorporation of Si and TiB2, Addit. Manuf., 36(2020), art. No. 101458.
    [18]
    T.T. Sun, H.Z. Wang, Z.Y. Gao, et al., The role of in-situ nano-TiB2 particles in improving the printability of noncastable 2024Al alloy, Mater. Res. Lett., 10(2022), No. 10, p. 656. doi: 10.1080/21663831.2022.2080514
    [19]
    Q.Z. Wang, X. Lin, N. Kang, et al., Effect of laser additive manufacturing on the microstructure and mechanical properties of TiB2 reinforced Al–Cu matrix composite, Mater. Sci. Eng. A, 840(2022), art. No. 142950. doi: 10.1016/j.msea.2022.142950
    [20]
    H. Zhang, Y. Wang, J.J. Wang, et al., Achieving superior mechanical properties of selective laser melted AlSi10Mg via direct aging treatment, J. Mater. Sci. Technol., 108(2022), p. 226. doi: 10.1016/j.jmst.2021.07.059
    [21]
    C. Weingarten, D. Buchbinder, N. Pirch, W. Meiners, K. Wissenbach, and R. Poprawe, Formation and reduction of hydrogen porosity during selective laser melting of AlSi10Mg, J. Mater. Process. Technol., 221(2015), p. 112. doi: 10.1016/j.jmatprotec.2015.02.013
    [22]
    Y.X. Geng, H. Tang, J.H. Xu, et al., Formability and mechanical properties of high-strength Al–(Mn, Mg)–(Sc, Zr) alloy produced by selective laser melting, Acta Metall. Sin., 58(2021), No. 8, p. 1044.
    [23]
    Y.Q. Xue, Z.Y. Lou, Q.T. Hao, et al., Insight into the precipitation behavior and mechanical properties of Sc–Zr micro-alloying TiB2/Al–4.5Cu composites, J. Alloys Compd., 929(2022), art. No. 167209. doi: 10.1016/j.jallcom.2022.167209
    [24]
    M.L. Qu, Q.L. Guo, L.I. Escano, A. Nabaa, Z.A. Young, and L.Y. Chen, Controlling process instability for defect lean metal additive manufacturing, Nat. Commun., 13(2022), No. 1, art. No. 1079. doi: 10.1038/s41467-022-28649-2
    [25]
    L. Du, L.D. Ke, M.L. Xiao, et al., Densification, microstructure and properties of Sc and Zr modified Al–Mn alloy prepared by selective laser melting, Opt. Laser Technol., 148(2022), art. No. 107703. doi: 10.1016/j.optlastec.2021.107703
    [26]
    N.T. Aboulkhair, N.M. Everitt, I. Ashcroft, and C. Tuck, Reducing porosity in AlSi10Mg parts processed by selective laser melting, Addit. Manuf., 1(2014), p. 77.
    [27]
    L.Z. Wang, S. Wang, and J.J. Wu, Experimental investigation on densification behavior and surface roughness of AlSi10Mg powders produced by selective laser melting, Opt. Laser Technol., 96(2017), p. 88. doi: 10.1016/j.optlastec.2017.05.006
    [28]
    Y.K. Xiao, Q. Yang, Z.Y. Bian, et al., Microstructure, heat treatment and mechanical properties of TiB2/Al–7Si–Cu–Mg alloy fabricated by selective laser melting, Mater. Sci. Eng. A, 809(2021), art. No. 140951. doi: 10.1016/j.msea.2021.140951
    [29]
    Z. Feng, H. Tan, Y.B. Fang, X. Lin, and W.D. Huang, Selective laser melting of TiB2/AlSi10Mg composite: Processability, microstructure and fracture behavior, J. Mater. Process. Technol., 299(2022), art. No. 117386. doi: 10.1016/j.jmatprotec.2021.117386
    [30]
    H.Y. Yang, Z.J. Cai, Q. Zhang, et al., Comparison of the effects of Mg and Zn on the interface mismatch and compression properties of 50vol% TiB2/Al composites, Ceram. Int., 47(2021), No. 15, p. 22121. doi: 10.1016/j.ceramint.2021.04.234
    [31]
    Z. Fan, Y. Wang, Y. Zhang, et al., Grain refining mechanism in the Al/Al–Ti–B system, Acta Mater., 84(2015), p. 292. doi: 10.1016/j.actamat.2014.10.055
    [32]
    J.H. Li, F.S. Hage, Q.M. Ramasse, and P. Schumacher, The nucleation sequence of α-Al on TiB2 particles in Al–Cu alloys, Acta Mater., 206(2021), art. No. 116652. doi: 10.1016/j.actamat.2021.116652
    [33]
    P. Mair, L. Kaserer, J. Braun, N. Weinberger, I. Letofsky-Papst, and G. Leichtfried, Microstructure and mechanical properties of a TiB2-modified Al–Cu alloy processed by laser powder-bed fusion, Mater. Sci. Eng. A, 799(2021), art. No. 140209. doi: 10.1016/j.msea.2020.140209
    [34]
    M. Vlach, I. Stulikova, B. Smola, et al., Precipitation in cold-rolled Al–Sc–Zr and Al–Mn–Sc–Zr alloys prepared by powder metallurgy, Mater. Charact., 86(2013), p. 59. doi: 10.1016/j.matchar.2013.09.010
    [35]
    Q. Wang, Z. Li, S.J. Pang, X.N. Li, C. Dong, and P.K. Liaw, Coherent precipitation and strengthening in compositionally complex alloys: A review, Entropy, 20(2018), No. 11, art. No. 878. doi: 10.3390/e20110878
    [36]
    B. Tang, Y.J. Hu, J. Lu, et al., Energy transfer and wavelength tunable lasing of single perovskite alloy nanowire, Nano Energy, 71(2020), art. No. 104641. doi: 10.1016/j.nanoen.2020.104641
    [37]
    I.S. Lee, C.J. Hsu, C.F. Chen, N.J. Ho, and P.W. Kao, Particle-reinforced aluminum matrix composites produced from powder mixtures via friction stir processing, Compos. Sci. Technol., 71(2011), No. 5, p. 693. doi: 10.1016/j.compscitech.2011.01.013
    [38]
    J. Hu, Y.N. Shi, X. Sauvage, G. Sha, and K. Lu, Grain boundary stability governs hardening and softening in extremely fine nanograined metals, Science, 355(2017), No. 6331, p. 1292. doi: 10.1126/science.aal5166
    [39]
    S.M. Ma, Y. Li, W.B. Kan, et al., Enhancement of grain refinement and heat resistance in TiB2-reinforced Al–Cu–Mg–Fe–Ni matrix composite additive manufactured by electron beam melting, J. Alloys Compd., 924(2022), art. No. 166395. doi: 10.1016/j.jallcom.2022.166395
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)

    Share Article

    Article Metrics

    Article Views(177) PDF Downloads(13) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return