Enyu Liu, Qingshuang Ma, Xintong Li, Aoxue Gao, Jing Bai, Liming Yu, Qiuzhi Gao,  and Huijun Li, Effect of two-step solid solution on microstructure and δ phase precipitation of Inconel 718 alloy, Int. J. Miner. Metall. Mater., 31(2024), No. 10, pp. 2199-2207. https://doi.org/10.1007/s12613-024-2887-7
Cite this article as:
Enyu Liu, Qingshuang Ma, Xintong Li, Aoxue Gao, Jing Bai, Liming Yu, Qiuzhi Gao,  and Huijun Li, Effect of two-step solid solution on microstructure and δ phase precipitation of Inconel 718 alloy, Int. J. Miner. Metall. Mater., 31(2024), No. 10, pp. 2199-2207. https://doi.org/10.1007/s12613-024-2887-7
Research Article

Effect of two-step solid solution on microstructure and δ phase precipitation of Inconel 718 alloy

+ Author Affiliations
  • Corresponding authors:

    Qiuzhi Gao    E-mail: neuqgao@163.com

    Huijun Li    E-mail: huijun@uow.edu.au

  • Received: 23 January 2024Revised: 6 March 2024Accepted: 20 March 2024Available online: 21 March 2024
  • Inconel 718 is the most popular nickel-based superalloy and is extensively used in aerospace, automotive, and energy industries owing to its extraordinary thermomechanical properties. The effects of different two-step solid solution treatments on microstructure and δ phase precipitation of Inconel 718 alloy were studied, and the transformation mechanism from γ″ metastable phase to δ phase was clarified. The precipitates were statistically analyzed by X-ray diffractometry. The results show that the δ phase content firstly increased, and then decreased with the temperature of the second-step solid solution. The changes in microstructure and δ phase were studied by scanning electron microscopy and transmission electron microscopy. An intragranular δ phase formed in Inconel 718 alloy at the second-step solid solution temperature of 925°C, and its orientation relationship with γ matrix was determined as ${[\bar 100]_{\text δ} }$//${[01\bar 1]_{\text γ} }$ and (010)δ//(111)γ. Furthermore, the Vickers hardness of different heat treatment samples was measured, and the sample treated by second-step solid solution at 1010°C reached the maximum hardness of HV 446.84.
  • loading
  • [1]
    F. Theska, A. Stanojevic, B. Oberwinkler, and S. Primig, Microstructure-property relationships in directly aged Alloy 718 turbine disks, Mater. Sci. Eng. A, 776(2020), art. No. 138967. doi: 10.1016/j.msea.2020.138967
    [2]
    A. Balan, M. Perez, T. Chaise, et al., Precipitation of γ″ in Inconel 718 alloy from microstructure to mechanical properties, Materialia, 20(2021), art. No. 101187. doi: 10.1016/j.mtla.2021.101187
    [3]
    H. He, L. Yu, C. Liu, H. Li, Q. Gao, and Y. Liu, Research progress of a novel martensitic heat-resistant steel G115, Acta Metall. Sin., 58(2022), No. 3, p. 311.
    [4]
    A. De Bartolomeis, S.T. Newman, I.S. Jawahir, D. Biermann, and A. Shokrani, Future research directions in the machining of Inconel 718, J. Mater. Process. Technol., 297(2021), art. No. 117260. doi: 10.1016/j.jmatprotec.2021.117260
    [5]
    E.M. Fayed, D. Shahriari, M. Saadati, V. Brailovski, M. Jahazi, and M. Medraj, Influence of homogenization and solution treatments time on the microstructure and hardness of inconel 718 fabricated by laser powder bed fusion process, Materials, 13(2020), No. 11, art. No. 2574. doi: 10.3390/ma13112574
    [6]
    H.J. Zhang, C. Li, Q.Y. Guo, et al., Hot tensile behavior of cold-rolled Inconel 718 alloy at 650 °C: The role of δ phase, Mater. Sci. Eng. A, 722(2018), p. 136. doi: 10.1016/j.msea.2018.02.093
    [7]
    Q.Z. Gao, Z.Y. Liu, L.L. Sun, et al., Review on precipitates and high-temperature properties of alumina-forming austenitic stainless steel, J. Mater. Res. Technol., 25(2023), p. 5372. doi: 10.1016/j.jmrt.2023.07.030
    [8]
    J. Ding, S. Xue, Z. Shang, et al., Characterization of precipitation in gradient Inconel 718 superalloy, Mater. Sci. Eng. A, 804(2021), art. No. 140718. doi: 10.1016/j.msea.2020.140718
    [9]
    G.H. Cao, T.Y. Sun, C.H. Wang, et al., Investigations of γ′, γ″ and δ precipitates in heat-treated Inconel 718 alloy fabricated by selective laser melting, Mater. Charact., 136(2018), p. 398. doi: 10.1016/j.matchar.2018.01.006
    [10]
    D. Sindhura, M.V. Sravya, and G.V.S. Murthy, Comprehensive microstructural evaluation of precipitation in Inconel 718, Metallogr. Microstruct. Anal., 8(2019), No. 2, p. 233. doi: 10.1007/s13632-018-00513-0
    [11]
    D. Srinivasan, Effect of long-time exposure on the evolution of minor phases in Alloy 718, Mater. Sci. Eng. A, 364(2004), No. 1-2, p. 27. doi: 10.1016/j.msea.2003.06.003
    [12]
    S.A. Mantri, S. Dasari, A. Sharma, et al., Effect of micro-segregation of alloying elements on the precipitation behaviour in laser surface engineered Alloy 718, Acta Mater., 210(2021), art. No. 116844. doi: 10.1016/j.actamat.2021.116844
    [13]
    Y.P. Mei, Y.C. Liu, C.X. Liu, et al., Effects of cold rolling on the precipitation kinetics and the morphology evolution of intermediate phases in Inconel 718 alloy, J. Alloys Compd., 649(2015), p. 949. doi: 10.1016/j.jallcom.2015.07.149
    [14]
    S. Azadian, L.Y. Wei, and R. Warren, Delta phase precipitation in Inconel 718, Mater. Charact., 53(2004), No. 1, p. 7. doi: 10.1016/j.matchar.2004.07.004
    [15]
    D.H. Ping, Y.F. Gu, C.Y. Cui, and H. Harada, Grain boundary segregation in a Ni–Fe-based (Alloy 718) superalloy, Mater. Sci. Eng. A, 456(2007), No. 1-2, p. 99. doi: 10.1016/j.msea.2007.01.090
    [16]
    M. Anderson, A.L. Thielin, F. Bridier, P. Bocher, and J. Savoie, δ Phase precipitation in Inconel 718 and associated mechanical properties, Mater. Sci. Eng. A, 679(2017), p. 48. doi: 10.1016/j.msea.2016.09.114
    [17]
    R.S. Huang, Y.A. Sun, L.L. Xing, G.L. Song, W. Liu, and Q.L. Li, Effect of gradient microstructure pinned by δ phase on elevated temperature performances of GH4169, Mater. Sci. Eng. A, 774(2020), art. No. 138913. doi: 10.1016/j.msea.2020.138913
    [18]
    E.M. Fayed, M. Saadati, D. Shahriari, V. Brailovski, M. Jahazi, and M. Medraj, Effect of homogenization and solution treatments time on the elevated-temperature mechanical behavior of Inconel 718 fabricated by laser powder bed fusion, Sci. Rep., 11(2021), art. No. 2020. doi: 10.1038/s41598-021-81618-5
    [19]
    K.S. Prasad, S.K. Panda, S.K. Kar, S.V.S.N. Murty, and S.C. Sharma, Prediction of fracture and deep drawing behavior of solution treated Inconel-718 sheets: Numerical modeling and experimental validation, Mater. Sci. Eng. A, 733(2018), p. 393. doi: 10.1016/j.msea.2018.07.007
    [20]
    W.D. Song, M.L. Hu, H.S. Zhang, and Y.X. Jin, Effects of different heat treatments on the dynamic shear response and shear localization in Inconel 718 alloy, Mater. Sci. Eng. A, 725(2018), p. 76. doi: 10.1016/j.msea.2018.04.010
    [21]
    N.Y. Ye, M. Cheng, S.H. Zhang, H.W. Song, and H.W. Zhou, Influence of delta phase precipitation on static recrystallization of cold-rolled Inconel 718 alloy in solid solution treatment, J. Iron Steel Res. Int., 26(2019), No. 2, p. 148. doi: 10.1007/s42243-018-0219-8
    [22]
    X.G. You, Y. Tan, S. Shi, et al., Effect of solution heat treatment on the precipitation behavior and strengthening mechanisms of electron beam smelted Inconel 718 superalloy, Mater. Sci. Eng. A, 689(2017), p. 257. doi: 10.1016/j.msea.2017.01.093
    [23]
    X.G. You, Y. Tan, L.H. Zhao, et al., Effect of solution heat treatment on microstructure and electrochemical behavior of electron beam smelted Inconel 718 superalloy, J. Alloys Compd., 741(2018), p. 792. doi: 10.1016/j.jallcom.2018.01.159
    [24]
    P.K. Bai, P.C. Huo, J. Wang, et al., Microstructural evolution and mechanical properties of Inconel 718 alloy manufactured by selective laser melting after solution and double aging treatments, J. Alloys Compd., 911(2022), art. No. 164988. doi: 10.1016/j.jallcom.2022.164988
    [25]
    G.A. Rao, M. Srinivas, and D.S. Sarma, Effect of solution treatment temperature on microstructure and mechanical properties of hot isostatically pressed superalloy Inconel* 718, Mater. Sci. Technol., 20(2004), No. 9, p. 1161. doi: 10.1179/026708304225022124
    [26]
    X.L. An, L. Zhou, B. Zhang, et al., Inconel 718 treated with two-stage solution and aging processes: Microstructure evolution and enhanced properties, Mater. Res. Express, 6(2019), No. 7, art. No. 075803. doi: 10.1088/2053-1591/ab1290
    [27]
    F. Theska, K. Nomoto, F. Godor, et al., On the early stages of precipitation during direct ageing of alloy 718, Acta Mater., 188(2020), p. 492. doi: 10.1016/j.actamat.2020.02.034
    [28]
    M. Sundararaman, P. Mukhopadhyay, and S. Banerjee, Precipitation of the δ-Ni3Nb phase in two nickel base superalloys, Metall. Trans. A, 19(1988), No. 3, p. 453. doi: 10.1007/BF02649259
    [29]
    C.H. Xiang, P.Z. Wang, X. Yang, and S.H. An, Effect of secondary solid solution treatment on microstructure and properties of IN718 alloy, Heat Treat. Met., 46(2021), No. 6, p. 132.
    [30]
    W. Le, Z.W. Chen, K. Yan, et al., Early evolution of δ phase and coarse γ″ phase in Inconel 718 alloy with high temperature ageing, Mater. Charact., 180(2021), art. No. 111403. doi: 10.1016/j.matchar.2021.111403
    [31]
    S.H. Chang, In situ TEM observation of γ′, γ″ and δ precipitations on Inconel 718 superalloy through HIP treatment, J. Alloys Compd., 486(2009), No. 1-2, p. 716. doi: 10.1016/j.jallcom.2009.07.046
    [32]
    M. Dehmas, J. Lacaze, A. Niang, and B. Viguier, TEM study of high-temperature precipitation of delta phase in Inconel 718 alloy, Adv. Mater. Sci. Eng., 2011(2011), No. 1, art. No. 940634.
    [33]
    Y.R. Sun, J. Wang, J. Yang, S.L. Wang, L. Liu, and L. Wei, Effect of heat treatment on microstructure and mechanical properties of IN718 deformed alloy, Heat Treat. Met., 43(2018), No. 12, p. 152.
    [34]
    W.C. Liu, F.R. Xiao, M. Yao, Z.L. Chen, S.G. Wang, and W.H. Li, Quantitative phase analysis of Inconel 718 by X-ray diffraction, J. Mater. Sci. Lett., 16(1997), No. 9, p. 769. doi: 10.1023/A:1018553703030
    [35]
    W.C. Liu, F.R. Xiao, M. Yao, Z.L. Chen, Z.Q. Jiang, and S.G. Wang, Relationship between the lattice constant of ϒ phase and the content of δ phase, γ″ and γ′ phases in inconel 718, Scripta Mater., 37(1997), No. 1, p. 59. doi: 10.1016/S1359-6462(97)00064-X
    [36]
    D.Y. Cai, W.C. Liu, R.B. Li, W.H. Zhang, and M. Yao, On the accuracy of the X-ray diffraction quantitative phases analysis method in Inconel 718, J. Mater. Sci., 39(2004), No. 2, p. 719. doi: 10.1023/B:JMSC.0000011540.61546.73
    [37]
    W.C. Liu, M. Yao, Z.L. Chen, Z.Q. Jiang, S.G. Wang, and W.H. Li, Quantitative phase analysis of Inconel 718 alloy, J. Aeronaut. Mater., 17(1997), No. 1, p. 17.
    [38]
    K. Kusabiraki, S. Saji, and T. Tsutsumi, Effects of cold rolling and annealing on the structure of γ″ precipitates in a Ni–18Cr–16Fe–5Nb–3Mo alloy, Metall. Mater. Trans. A, 30(1999), No. 8, p. 1923. doi: 10.1007/s11661-999-0003-2
    [39]
    H.L. Qin, Z.N. Bi, H.Y. Yu, G. Feng, J.H. Du, and J. Zhang, Influence of stress on γ″ precipitation behavior in Inconel 718 during aging, J. Alloys Compd., 740(2018), p. 997. doi: 10.1016/j.jallcom.2018.01.030
    [40]
    H.J. Zhang, C. Li, Y.C. Liu, et al., Effect of hot deformation on γ″ and δ phase precipitation of Inconel 718 alloy during deformation&isothermal treatment, J. Alloys Compd., 716(2017), p. 65. doi: 10.1016/j.jallcom.2017.05.042
    [41]
    H.J. Zhang, C. Li, Q.Y. Guo, et al., Delta precipitation in wrought Inconel 718 alloy; the role of dynamic recrystallization, Mater. Charact., 133(2017), p. 138. doi: 10.1016/j.matchar.2017.09.032
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(5)

    Share Article

    Article Metrics

    Article Views(407) PDF Downloads(21) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return